stop tracking dagster (that is in own repo)
This commit is contained in:
@@ -1,20 +0,0 @@
|
||||
FROM python:3.12-slim
|
||||
|
||||
# Checkout and install dagster libraries needed to run the gRPC server
|
||||
# exposing your repository to dagit and dagster-daemon, and to load the DagsterInstance
|
||||
|
||||
COPY dagster-requirements.txt requirements.txt
|
||||
RUN pip install uv
|
||||
RUN uv pip install -r requirements.txt --system
|
||||
RUN uv pip install polars-lts-cpu --system
|
||||
|
||||
# Add repository code
|
||||
WORKDIR /opt/dagster/home
|
||||
|
||||
# Run dagster gRPC server on port 4000
|
||||
EXPOSE 4000
|
||||
|
||||
# CMD allows this to be overridden from run launchers or executors that want
|
||||
# to run other commands against your repository
|
||||
#CMD ["dagster", "api", "grpc", "-h", "0.0.0.0", "-p", "4000", "-f", "repo.py"]
|
||||
CMD ["dagster", "code-server", "start", "-h", "0.0.0.0", "-p", "4000", "-f", "repo.py"]
|
||||
@@ -1,18 +0,0 @@
|
||||
# Dagster libraries to run both dagit and the dagster-daemon. Does not
|
||||
# need to have access to any pipeline code.
|
||||
|
||||
FROM python:3.12-slim
|
||||
|
||||
COPY dagster-requirements.txt requirements.txt
|
||||
RUN pip install uv
|
||||
RUN uv pip install -r requirements.txt --system
|
||||
RUN uv pip install polars-lts-cpu --system
|
||||
|
||||
# Set $DAGSTER_HOME and copy dagster instance and workspace YAML there
|
||||
ENV DAGSTER_HOME=/opt/dagster/home/
|
||||
|
||||
RUN mkdir -p $DAGSTER_HOME
|
||||
|
||||
COPY dagster.yaml workspace.yaml $DAGSTER_HOME
|
||||
|
||||
WORKDIR $DAGSTER_HOME
|
||||
@@ -1,20 +0,0 @@
|
||||
requirements.txt: pyproject.toml
|
||||
uv pip compile $(UPGRADE) --output-file=requirements.txt pyproject.toml >/dev/null
|
||||
|
||||
dagster-requirements.txt: requirements.txt pyproject.toml
|
||||
uv pip compile $(UPGRADE) --constraint=requirements.txt --output-file=dagster-requirements.txt --extra=dagster pyproject.toml >/dev/null
|
||||
|
||||
sync: virtualenv
|
||||
uv pip sync requirements.txt
|
||||
|
||||
upgrade-deps: virtualenv
|
||||
touch pyproject.toml
|
||||
$(MAKE) UPGRADE="--upgrade" dev-requirements.txt
|
||||
|
||||
install-tools: virtualenv
|
||||
pip install $(UPGRADE) pip wheel pip-tools uv
|
||||
|
||||
upgrade-tools: virtualenv
|
||||
$(MAKE) UPGRADE="--upgrade" install-tools
|
||||
|
||||
upgrade: upgrade-tools upgrade-pre-commit upgrade-deps sync
|
||||
@@ -1,398 +0,0 @@
|
||||
# This file was autogenerated by uv via the following command:
|
||||
# uv pip compile --constraint=requirements.txt --output-file=dagster-requirements.txt --extra=dagster pyproject.toml
|
||||
aiobotocore==2.15.1
|
||||
# via s3fs
|
||||
aiohappyeyeballs==2.4.3
|
||||
# via aiohttp
|
||||
aiohttp==3.10.8
|
||||
# via
|
||||
# aiobotocore
|
||||
# s3fs
|
||||
aioitertools==0.12.0
|
||||
# via aiobotocore
|
||||
aiosignal==1.3.1
|
||||
# via aiohttp
|
||||
alembic==1.13.3
|
||||
# via dagster
|
||||
aniso8601==9.0.1
|
||||
# via graphene
|
||||
annotated-types==0.7.0
|
||||
# via pydantic
|
||||
anyio==4.6.0
|
||||
# via
|
||||
# gql
|
||||
# starlette
|
||||
# watchfiles
|
||||
appdirs==1.4.4
|
||||
# via pint
|
||||
asttokens==2.4.1
|
||||
# via icecream
|
||||
attrs==24.2.0
|
||||
# via aiohttp
|
||||
backoff==2.2.1
|
||||
# via gql
|
||||
beautifulsoup4==4.12.3
|
||||
boto3==1.35.23
|
||||
# via
|
||||
# aiobotocore
|
||||
# dagster-aws
|
||||
botocore==1.35.23
|
||||
# via
|
||||
# aiobotocore
|
||||
# boto3
|
||||
# s3transfer
|
||||
cachetools==5.5.0
|
||||
# via google-auth
|
||||
certifi==2024.8.30
|
||||
# via
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# pyogrio
|
||||
# pyproj
|
||||
# requests
|
||||
charset-normalizer==3.3.2
|
||||
# via requests
|
||||
click==8.1.7
|
||||
# via
|
||||
# dagster
|
||||
# dagster-webserver
|
||||
# uvicorn
|
||||
colorama==0.4.6
|
||||
# via icecream
|
||||
coloredlogs==14.0
|
||||
# via dagster
|
||||
contourpy==1.3.0
|
||||
# via matplotlib
|
||||
cramjam==2.8.4
|
||||
# via fastparquet
|
||||
croniter==3.0.3
|
||||
# via dagster
|
||||
cycler==0.12.1
|
||||
# via matplotlib
|
||||
dagit==1.8.9
|
||||
dagster==1.8.9
|
||||
# via
|
||||
# dagster-aws
|
||||
# dagster-docker
|
||||
# dagster-duckdb
|
||||
# dagster-duckdb-pandas
|
||||
# dagster-graphql
|
||||
# dagster-polars
|
||||
# dagster-postgres
|
||||
# dagster-webserver
|
||||
dagster-aws==0.24.9
|
||||
dagster-docker==0.24.9
|
||||
dagster-duckdb==0.24.9
|
||||
# via dagster-duckdb-pandas
|
||||
dagster-duckdb-pandas==0.24.9
|
||||
dagster-graphql==1.8.9
|
||||
# via dagster-webserver
|
||||
dagster-pipes==1.8.9
|
||||
# via dagster
|
||||
dagster-polars==0.24.9
|
||||
dagster-postgres==0.24.9
|
||||
dagster-webserver==1.8.9
|
||||
# via dagit
|
||||
dnspython==2.6.1
|
||||
# via email-validator
|
||||
docker==7.1.0
|
||||
# via dagster-docker
|
||||
docker-image-py==0.1.13
|
||||
# via dagster-docker
|
||||
docstring-parser==0.16
|
||||
# via dagster
|
||||
duckdb==1.1.1
|
||||
# via dagster-duckdb
|
||||
durationpy==0.8
|
||||
# via kubernetes
|
||||
email-validator==2.2.0
|
||||
# via pydantic
|
||||
et-xmlfile==1.1.0
|
||||
# via openpyxl
|
||||
executing==2.1.0
|
||||
# via icecream
|
||||
fastapi==0.115.0
|
||||
fastparquet==2024.5.0
|
||||
filelock==3.16.1
|
||||
# via dagster
|
||||
flexcache==0.3
|
||||
# via pint
|
||||
flexparser==0.3.1
|
||||
# via pint
|
||||
fonttools==4.54.1
|
||||
# via matplotlib
|
||||
frozenlist==1.4.1
|
||||
# via
|
||||
# aiohttp
|
||||
# aiosignal
|
||||
fsspec==2024.9.0
|
||||
# via
|
||||
# fastparquet
|
||||
# s3fs
|
||||
# universal-pathlib
|
||||
geopandas==1.0.1
|
||||
gitdb==4.0.11
|
||||
# via gitpython
|
||||
gitpython==3.1.43
|
||||
google-auth==2.35.0
|
||||
# via kubernetes
|
||||
gql==3.5.0
|
||||
# via dagster-graphql
|
||||
graphene==3.3
|
||||
# via dagster-graphql
|
||||
graphql-core==3.2.4
|
||||
# via
|
||||
# gql
|
||||
# graphene
|
||||
# graphql-relay
|
||||
graphql-relay==3.2.0
|
||||
# via graphene
|
||||
grpcio==1.66.2
|
||||
# via
|
||||
# dagster
|
||||
# grpcio-health-checking
|
||||
grpcio-health-checking==1.62.3
|
||||
# via dagster
|
||||
h11==0.14.0
|
||||
# via uvicorn
|
||||
httptools==0.6.1
|
||||
# via uvicorn
|
||||
humanfriendly==10.0
|
||||
# via coloredlogs
|
||||
icecream==2.1.3
|
||||
idna==3.10
|
||||
# via
|
||||
# anyio
|
||||
# email-validator
|
||||
# requests
|
||||
# yarl
|
||||
influxdb-client==1.46.0
|
||||
jinja2==3.1.4
|
||||
# via dagster
|
||||
jmespath==1.0.1
|
||||
# via
|
||||
# boto3
|
||||
# botocore
|
||||
kiwisolver==1.4.7
|
||||
# via matplotlib
|
||||
kubernetes==31.0.0
|
||||
lxml==5.3.0
|
||||
mako==1.3.5
|
||||
# via alembic
|
||||
markdown-it-py==3.0.0
|
||||
# via rich
|
||||
markupsafe==2.1.5
|
||||
# via
|
||||
# jinja2
|
||||
# mako
|
||||
matplotlib==3.9.2
|
||||
# via seaborn
|
||||
mdurl==0.1.2
|
||||
# via markdown-it-py
|
||||
multidict==6.1.0
|
||||
# via
|
||||
# aiohttp
|
||||
# yarl
|
||||
networkx==3.3
|
||||
numpy==2.1.1
|
||||
# via
|
||||
# contourpy
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# matplotlib
|
||||
# pandas
|
||||
# pyarrow
|
||||
# pyogrio
|
||||
# seaborn
|
||||
# shapely
|
||||
oauthlib==3.2.2
|
||||
# via
|
||||
# kubernetes
|
||||
# requests-oauthlib
|
||||
openpyxl==3.1.5
|
||||
packaging==24.1
|
||||
# via
|
||||
# dagster
|
||||
# dagster-aws
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# matplotlib
|
||||
# pyogrio
|
||||
pandas==2.2.3
|
||||
# via
|
||||
# dagster-duckdb-pandas
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# pint-pandas
|
||||
# seaborn
|
||||
pillow==10.4.0
|
||||
# via matplotlib
|
||||
pint==0.24.3
|
||||
# via pint-pandas
|
||||
pint-pandas==0.6.2
|
||||
polars==1.9.0
|
||||
# via dagster-polars
|
||||
protobuf==4.25.5
|
||||
# via
|
||||
# dagster
|
||||
# grpcio-health-checking
|
||||
psycopg2-binary==2.9.9
|
||||
# via dagster-postgres
|
||||
pyarrow==17.0.0
|
||||
# via dagster-polars
|
||||
pyasn1==0.6.1
|
||||
# via
|
||||
# pyasn1-modules
|
||||
# rsa
|
||||
pyasn1-modules==0.4.1
|
||||
# via google-auth
|
||||
pydantic==2.9.2
|
||||
# via
|
||||
# dagster
|
||||
# fastapi
|
||||
# pydantic-settings
|
||||
pydantic-core==2.23.4
|
||||
# via pydantic
|
||||
pydantic-settings==2.5.2
|
||||
pygments==2.18.0
|
||||
# via
|
||||
# icecream
|
||||
# rich
|
||||
pyogrio==0.10.0
|
||||
# via geopandas
|
||||
pyparsing==3.1.4
|
||||
# via matplotlib
|
||||
pyproj==3.7.0
|
||||
# via geopandas
|
||||
pysocks==1.7.1
|
||||
# via requests
|
||||
python-dateutil==2.9.0.post0
|
||||
# via
|
||||
# botocore
|
||||
# croniter
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# matplotlib
|
||||
# pandas
|
||||
python-dotenv==1.0.1
|
||||
# via
|
||||
# dagster
|
||||
# pydantic-settings
|
||||
# uvicorn
|
||||
pytz==2024.2
|
||||
# via
|
||||
# croniter
|
||||
# dagster
|
||||
# pandas
|
||||
pyyaml==6.0.2
|
||||
# via
|
||||
# dagster
|
||||
# kubernetes
|
||||
# uvicorn
|
||||
reactivex==4.0.4
|
||||
# via influxdb-client
|
||||
regex==2024.9.11
|
||||
# via docker-image-py
|
||||
requests==2.32.3
|
||||
# via
|
||||
# dagster
|
||||
# dagster-aws
|
||||
# dagster-graphql
|
||||
# docker
|
||||
# gql
|
||||
# kubernetes
|
||||
# requests-oauthlib
|
||||
# requests-toolbelt
|
||||
requests-oauthlib==2.0.0
|
||||
# via kubernetes
|
||||
requests-toolbelt==1.0.0
|
||||
# via gql
|
||||
rich==13.8.1
|
||||
# via dagster
|
||||
rsa==4.9
|
||||
# via google-auth
|
||||
s3fs==2024.9.0
|
||||
s3transfer==0.10.2
|
||||
# via boto3
|
||||
seaborn==0.13.2
|
||||
setuptools==75.1.0
|
||||
# via
|
||||
# dagster
|
||||
# influxdb-client
|
||||
shapely==2.0.6
|
||||
# via geopandas
|
||||
six==1.16.0
|
||||
# via
|
||||
# asttokens
|
||||
# kubernetes
|
||||
# python-dateutil
|
||||
smmap==5.0.1
|
||||
# via gitdb
|
||||
sniffio==1.3.1
|
||||
# via anyio
|
||||
soupsieve==2.6
|
||||
# via beautifulsoup4
|
||||
sqlalchemy==2.0.35
|
||||
# via
|
||||
# alembic
|
||||
# dagster
|
||||
starlette==0.38.6
|
||||
# via
|
||||
# dagster-graphql
|
||||
# dagster-webserver
|
||||
# fastapi
|
||||
structlog==24.4.0
|
||||
# via dagster
|
||||
tabulate==0.9.0
|
||||
# via dagster
|
||||
tomli==2.0.1
|
||||
# via dagster
|
||||
toposort==1.10
|
||||
# via dagster
|
||||
tqdm==4.66.5
|
||||
# via dagster
|
||||
typing-extensions==4.12.2
|
||||
# via
|
||||
# alembic
|
||||
# dagster
|
||||
# dagster-polars
|
||||
# fastapi
|
||||
# flexcache
|
||||
# flexparser
|
||||
# pint
|
||||
# pydantic
|
||||
# pydantic-core
|
||||
# reactivex
|
||||
# sqlalchemy
|
||||
tzdata==2024.2
|
||||
# via pandas
|
||||
universal-pathlib==0.2.5
|
||||
# via
|
||||
# dagster
|
||||
# dagster-polars
|
||||
urllib3==2.2.3
|
||||
# via
|
||||
# botocore
|
||||
# docker
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# requests
|
||||
uvicorn==0.31.0
|
||||
# via dagster-webserver
|
||||
uvloop==0.20.0
|
||||
# via uvicorn
|
||||
watchdog==5.0.3
|
||||
# via dagster
|
||||
watchfiles==0.24.0
|
||||
# via uvicorn
|
||||
websocket-client==1.8.0
|
||||
# via kubernetes
|
||||
websockets==13.1
|
||||
# via uvicorn
|
||||
wrapt==1.16.0
|
||||
# via aiobotocore
|
||||
xlsxwriter==3.2.0
|
||||
yarl==1.13.1
|
||||
# via
|
||||
# aiohttp
|
||||
# gql
|
||||
@@ -1,69 +0,0 @@
|
||||
telemetry:
|
||||
enabled: false
|
||||
|
||||
concurrency:
|
||||
default_op_concurrency_limit: 2
|
||||
|
||||
run_coordinator:
|
||||
module: dagster.core.run_coordinator
|
||||
class: QueuedRunCoordinator
|
||||
|
||||
run_launcher:
|
||||
module: dagster_docker
|
||||
class: DockerRunLauncher
|
||||
config:
|
||||
env_vars:
|
||||
- DAGSTER_POSTGRES_USER
|
||||
- DAGSTER_POSTGRES_PASSWORD
|
||||
- DAGSTER_POSTGRES_DB
|
||||
network: dagster
|
||||
container_kwargs:
|
||||
volumes:
|
||||
- /opt/dagster/src/app/:/opt/dagster/home/app/
|
||||
- /opt/dagster/src/repo.py:/opt/dagster/home/repo.py
|
||||
|
||||
# - /opt/dagster/storage/:/opt/dagster/home/storage/
|
||||
- /opt/dagster/storage/import/:/opt/dagster/home/storage/import/
|
||||
- /opt/dagster/storage/deals/:/opt/dagster/home/storage/deals/
|
||||
|
||||
run_storage:
|
||||
module: dagster_postgres.run_storage
|
||||
class: PostgresRunStorage
|
||||
config:
|
||||
postgres_db:
|
||||
hostname: postgresql
|
||||
username:
|
||||
env: DAGSTER_POSTGRES_USER
|
||||
password:
|
||||
env: DAGSTER_POSTGRES_PASSWORD
|
||||
db_name:
|
||||
env: DAGSTER_POSTGRES_DB
|
||||
port: 5432
|
||||
|
||||
schedule_storage:
|
||||
module: dagster_postgres.schedule_storage
|
||||
class: PostgresScheduleStorage
|
||||
config:
|
||||
postgres_db:
|
||||
hostname: postgresql
|
||||
username:
|
||||
env: DAGSTER_POSTGRES_USER
|
||||
password:
|
||||
env: DAGSTER_POSTGRES_PASSWORD
|
||||
db_name:
|
||||
env: DAGSTER_POSTGRES_DB
|
||||
port: 5432
|
||||
|
||||
event_log_storage:
|
||||
module: dagster_postgres.event_log
|
||||
class: PostgresEventLogStorage
|
||||
config:
|
||||
postgres_db:
|
||||
hostname: postgresql
|
||||
username:
|
||||
env: DAGSTER_POSTGRES_USER
|
||||
password:
|
||||
env: DAGSTER_POSTGRES_PASSWORD
|
||||
db_name:
|
||||
env: DAGSTER_POSTGRES_DB
|
||||
port: 5432
|
||||
@@ -1,47 +0,0 @@
|
||||
x-dagster-env: &dagster_env
|
||||
DAGSTER_POSTGRES_USER: ${POSTGRES_USER}
|
||||
DAGSTER_POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
|
||||
DAGSTER_POSTGRES_DB: ${POSTGRES_DB}
|
||||
DAGSTER_CURRENT_IMAGE: ${DAGSTER_CURRENT_IMAGE}
|
||||
|
||||
x-volumes: &volumes
|
||||
volumes:
|
||||
#- /opt/dagster/storage/:/opt/dagster/home/storage/
|
||||
- /opt/dagster/storage/import/:/opt/dagster/home/storage/import/
|
||||
- /opt/dagster/storage/deals/:/opt/dagster/home/storage/deals/
|
||||
- /opt/dagster/src/app/:/opt/dagster/home/app/
|
||||
- /opt/dagster/src/repo.py:/opt/dagster/home/repo.py
|
||||
|
||||
services:
|
||||
# This service runs the gRPC server that loads your user code, in both dagit
|
||||
# and dagster-daemon. By setting DAGSTER_CURRENT_IMAGE to its own image, we tell the
|
||||
# run launcher to use this same image when launching runs in a new container as well.
|
||||
# Multiple containers like this can be deployed separately - each just needs to run on
|
||||
# its own port, and have its own entry in the workspace.yaml file that's loaded by dagit.
|
||||
user_code:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile.code
|
||||
container_name: user_code
|
||||
image: user_code_image
|
||||
restart: always
|
||||
environment:
|
||||
<<: *dagster_env
|
||||
<<: *volumes
|
||||
networks:
|
||||
- dagster
|
||||
|
||||
other_image:
|
||||
profiles: [ disabled ]
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile
|
||||
container_name: other_image
|
||||
image: user_code_image
|
||||
restart: always
|
||||
environment:
|
||||
<<: *dagster_env
|
||||
DAGSTER_CURRENT_IMAGE: something_else
|
||||
<<: *volumes
|
||||
networks:
|
||||
- dagster
|
||||
@@ -1,90 +0,0 @@
|
||||
x-postgres-env: &postgres_env
|
||||
POSTGRES_USER: ${POSTGRES_USER}
|
||||
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
|
||||
POSTGRES_DB: ${POSTGRES_DB}
|
||||
x-aws-env: &aws_env
|
||||
AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}
|
||||
AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_ACCESS_KEY}
|
||||
x-dagster-env: &dagster_env
|
||||
DAGSTER_POSTGRES_USER: ${POSTGRES_USER}
|
||||
DAGSTER_POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
|
||||
DAGSTER_POSTGRES_DB: ${POSTGRES_DB}
|
||||
DAGSTER_CURRENT_IMAGE: ${DAGSTER_CURRENT_IMAGE}
|
||||
|
||||
x-volumes: &volumes
|
||||
volumes:
|
||||
- /opt/dagster/dagster.yaml:/opt/dagster/home/dagster.yaml
|
||||
- /opt/dagster/workspace.yaml:/opt/dagster/home/workspace.yaml
|
||||
- /var/run/docker.sock:/var/run/docker.sock
|
||||
|
||||
#- /opt/dagster/storage/:/opt/dagster/home/storage/
|
||||
- /opt/dagster/storage/import/:/opt/dagster/home/storage/import/
|
||||
- /opt/dagster/storage/deals/:/opt/dagster/home/storage/deals/
|
||||
|
||||
- /opt/dagster/src/app/:/opt/dagster/home/app/
|
||||
- /opt/dagster/src/repo.py:/opt/dagster/home/repo.py
|
||||
# - /opt/homebrew/Caskroom/mambaforge/base/envs:/opt/homebrew/Caskroom/mambaforge/base/envs
|
||||
|
||||
# Towel
|
||||
# - /opt/dagster/src/towel.py:/opt/dagster/home/towel.py
|
||||
# - /Users/rik/Seafile/Code/company/navara/Klanten/Eneco/towel/towel:/opt/dagster/home/app/towel
|
||||
# - /Users/rik/Library/Caches/pypoetry/virtualenvs/towel-V7mtCF2c-py3.9:/venv/towel
|
||||
|
||||
services:
|
||||
# This service runs the postgres DB used by dagster for run storage, schedule storage,
|
||||
# and event log storage.
|
||||
postgresql:
|
||||
image: postgres:11
|
||||
container_name: postgresql
|
||||
environment:
|
||||
<<: *postgres_env
|
||||
networks:
|
||||
- dagster
|
||||
|
||||
# This service runs dagit, which loads your user code from the user code container.
|
||||
# Since our instance uses the QueuedRunCoordinator, any runs submitted from dagit will be put on
|
||||
# a queue and later dequeued and launched by dagster-daemon.
|
||||
dagit:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile.system
|
||||
entrypoint:
|
||||
- dagster-webserver
|
||||
- -h
|
||||
- "0.0.0.0"
|
||||
- -p
|
||||
- "3000"
|
||||
- -w
|
||||
- workspace.yaml
|
||||
container_name: dagit
|
||||
expose:
|
||||
- "3000"
|
||||
ports:
|
||||
- "3000:3000"
|
||||
environment:
|
||||
<<: *dagster_env
|
||||
<<: *volumes
|
||||
networks:
|
||||
- dagster
|
||||
depends_on:
|
||||
- postgresql
|
||||
- user_code
|
||||
|
||||
# This service runs the dagster-daemon process, which is responsible for taking runs
|
||||
# off of the queue and launching them, as well as creating runs from schedules or sensors.
|
||||
daemon:
|
||||
build:
|
||||
context: .
|
||||
dockerfile: Dockerfile.system
|
||||
entrypoint:
|
||||
- dagster-daemon
|
||||
- run
|
||||
container_name: daemon
|
||||
restart: on-failure
|
||||
environment:
|
||||
<<: [ *dagster_env, *aws_env ]
|
||||
<<: *volumes
|
||||
networks:
|
||||
- dagster
|
||||
depends_on:
|
||||
- postgresql
|
||||
@@ -1,8 +0,0 @@
|
||||
networks:
|
||||
dagster:
|
||||
driver: bridge
|
||||
name: dagster
|
||||
|
||||
include:
|
||||
- docker-compose.system.yaml
|
||||
- docker-compose.code.yaml
|
||||
@@ -1,75 +0,0 @@
|
||||
[project]
|
||||
requires-python = "==3.12"
|
||||
name = "dev"
|
||||
authors = [
|
||||
{ name = "Rik Veenboer", email = "rik.veenboer@gmail.com" }
|
||||
]
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"fastapi",
|
||||
"gitpython",
|
||||
"kubernetes",
|
||||
"matplotlib",
|
||||
"seaborn",
|
||||
"openpyxl",
|
||||
"xlsxwriter",
|
||||
"pandas",
|
||||
"pyarrow",
|
||||
"pydantic[email]",
|
||||
"pydantic-settings",
|
||||
"pyyaml",
|
||||
"requests",
|
||||
"s3fs[boto3]",
|
||||
"structlog",
|
||||
"uvicorn",
|
||||
"duckdb",
|
||||
"geopandas",
|
||||
"lxml",
|
||||
"networkx",
|
||||
"Pint",
|
||||
"Pint-Pandas",
|
||||
"boto3",
|
||||
"influxdb-client",
|
||||
"requests[socks]",
|
||||
"beautifulsoup4",
|
||||
"fastparquet",
|
||||
"icecream"
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
dev = [
|
||||
"black",
|
||||
"isort",
|
||||
"nbstripout",
|
||||
"pip-tools",
|
||||
"pre-commit",
|
||||
"ruff",
|
||||
"mypy"
|
||||
]
|
||||
local = [
|
||||
"ipykernel",
|
||||
"ipywidgets"
|
||||
]
|
||||
dagster = [
|
||||
"dagster",
|
||||
"dagster-graphql",
|
||||
"dagster-postgres",
|
||||
"dagster-docker",
|
||||
"dagster-aws",
|
||||
"dagster-polars",
|
||||
"dagster-duckdb",
|
||||
"dagster-duckdb-pandas",
|
||||
"dagit"
|
||||
]
|
||||
|
||||
[tool.poetry]
|
||||
name = "dev"
|
||||
version = "0.1.0"
|
||||
description = ""
|
||||
authors = ["Rik Veenboer <rik.veenboer@gmail.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
seven = "^1.0.0"
|
||||
|
||||
[tool.ruff]
|
||||
builtins = ["ic"]
|
||||
@@ -1,238 +0,0 @@
|
||||
# This file was autogenerated by uv via the following command:
|
||||
# uv pip compile --output-file=requirements.txt pyproject.toml
|
||||
aiobotocore==2.15.1
|
||||
# via s3fs
|
||||
aiohappyeyeballs==2.4.3
|
||||
# via aiohttp
|
||||
aiohttp==3.10.8
|
||||
# via
|
||||
# aiobotocore
|
||||
# s3fs
|
||||
aioitertools==0.12.0
|
||||
# via aiobotocore
|
||||
aiosignal==1.3.1
|
||||
# via aiohttp
|
||||
annotated-types==0.7.0
|
||||
# via pydantic
|
||||
anyio==4.6.0
|
||||
# via starlette
|
||||
appdirs==1.4.4
|
||||
# via pint
|
||||
asttokens==2.4.1
|
||||
# via icecream
|
||||
attrs==24.2.0
|
||||
# via aiohttp
|
||||
beautifulsoup4==4.12.3
|
||||
boto3==1.35.23
|
||||
# via aiobotocore
|
||||
botocore==1.35.23
|
||||
# via
|
||||
# aiobotocore
|
||||
# boto3
|
||||
# s3transfer
|
||||
cachetools==5.5.0
|
||||
# via google-auth
|
||||
certifi==2024.8.30
|
||||
# via
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# pyogrio
|
||||
# pyproj
|
||||
# requests
|
||||
charset-normalizer==3.3.2
|
||||
# via requests
|
||||
click==8.1.7
|
||||
# via uvicorn
|
||||
colorama==0.4.6
|
||||
# via icecream
|
||||
contourpy==1.3.0
|
||||
# via matplotlib
|
||||
cramjam==2.8.4
|
||||
# via fastparquet
|
||||
cycler==0.12.1
|
||||
# via matplotlib
|
||||
dnspython==2.6.1
|
||||
# via email-validator
|
||||
duckdb==1.1.1
|
||||
durationpy==0.8
|
||||
# via kubernetes
|
||||
email-validator==2.2.0
|
||||
# via pydantic
|
||||
et-xmlfile==1.1.0
|
||||
# via openpyxl
|
||||
executing==2.1.0
|
||||
# via icecream
|
||||
fastapi==0.115.0
|
||||
fastparquet==2024.5.0
|
||||
flexcache==0.3
|
||||
# via pint
|
||||
flexparser==0.3.1
|
||||
# via pint
|
||||
fonttools==4.54.1
|
||||
# via matplotlib
|
||||
frozenlist==1.4.1
|
||||
# via
|
||||
# aiohttp
|
||||
# aiosignal
|
||||
fsspec==2024.9.0
|
||||
# via
|
||||
# fastparquet
|
||||
# s3fs
|
||||
geopandas==1.0.1
|
||||
gitdb==4.0.11
|
||||
# via gitpython
|
||||
gitpython==3.1.43
|
||||
google-auth==2.35.0
|
||||
# via kubernetes
|
||||
h11==0.14.0
|
||||
# via uvicorn
|
||||
icecream==2.1.3
|
||||
idna==3.10
|
||||
# via
|
||||
# anyio
|
||||
# email-validator
|
||||
# requests
|
||||
# yarl
|
||||
influxdb-client==1.46.0
|
||||
jmespath==1.0.1
|
||||
# via
|
||||
# boto3
|
||||
# botocore
|
||||
kiwisolver==1.4.7
|
||||
# via matplotlib
|
||||
kubernetes==31.0.0
|
||||
lxml==5.3.0
|
||||
matplotlib==3.9.2
|
||||
# via seaborn
|
||||
multidict==6.1.0
|
||||
# via
|
||||
# aiohttp
|
||||
# yarl
|
||||
networkx==3.3
|
||||
numpy==2.1.1
|
||||
# via
|
||||
# contourpy
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# matplotlib
|
||||
# pandas
|
||||
# pyarrow
|
||||
# pyogrio
|
||||
# seaborn
|
||||
# shapely
|
||||
oauthlib==3.2.2
|
||||
# via
|
||||
# kubernetes
|
||||
# requests-oauthlib
|
||||
openpyxl==3.1.5
|
||||
packaging==24.1
|
||||
# via
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# matplotlib
|
||||
# pyogrio
|
||||
pandas==2.2.3
|
||||
# via
|
||||
# fastparquet
|
||||
# geopandas
|
||||
# pint-pandas
|
||||
# seaborn
|
||||
pillow==10.4.0
|
||||
# via matplotlib
|
||||
pint==0.24.3
|
||||
# via pint-pandas
|
||||
pint-pandas==0.6.2
|
||||
pyarrow==17.0.0
|
||||
pyasn1==0.6.1
|
||||
# via
|
||||
# pyasn1-modules
|
||||
# rsa
|
||||
pyasn1-modules==0.4.1
|
||||
# via google-auth
|
||||
pydantic==2.9.2
|
||||
# via
|
||||
# fastapi
|
||||
# pydantic-settings
|
||||
pydantic-core==2.23.4
|
||||
# via pydantic
|
||||
pydantic-settings==2.5.2
|
||||
pygments==2.18.0
|
||||
# via icecream
|
||||
pyogrio==0.10.0
|
||||
# via geopandas
|
||||
pyparsing==3.1.4
|
||||
# via matplotlib
|
||||
pyproj==3.7.0
|
||||
# via geopandas
|
||||
pysocks==1.7.1
|
||||
# via requests
|
||||
python-dateutil==2.9.0.post0
|
||||
# via
|
||||
# botocore
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# matplotlib
|
||||
# pandas
|
||||
python-dotenv==1.0.1
|
||||
# via pydantic-settings
|
||||
pytz==2024.2
|
||||
# via pandas
|
||||
pyyaml==6.0.2
|
||||
# via kubernetes
|
||||
reactivex==4.0.4
|
||||
# via influxdb-client
|
||||
requests==2.32.3
|
||||
# via
|
||||
# kubernetes
|
||||
# requests-oauthlib
|
||||
requests-oauthlib==2.0.0
|
||||
# via kubernetes
|
||||
rsa==4.9
|
||||
# via google-auth
|
||||
s3fs==2024.9.0
|
||||
s3transfer==0.10.2
|
||||
# via boto3
|
||||
seaborn==0.13.2
|
||||
setuptools==75.1.0
|
||||
# via influxdb-client
|
||||
shapely==2.0.6
|
||||
# via geopandas
|
||||
six==1.16.0
|
||||
# via
|
||||
# asttokens
|
||||
# kubernetes
|
||||
# python-dateutil
|
||||
smmap==5.0.1
|
||||
# via gitdb
|
||||
sniffio==1.3.1
|
||||
# via anyio
|
||||
soupsieve==2.6
|
||||
# via beautifulsoup4
|
||||
starlette==0.38.6
|
||||
# via fastapi
|
||||
structlog==24.4.0
|
||||
typing-extensions==4.12.2
|
||||
# via
|
||||
# fastapi
|
||||
# flexcache
|
||||
# flexparser
|
||||
# pint
|
||||
# pydantic
|
||||
# pydantic-core
|
||||
# reactivex
|
||||
tzdata==2024.2
|
||||
# via pandas
|
||||
urllib3==2.2.3
|
||||
# via
|
||||
# botocore
|
||||
# influxdb-client
|
||||
# kubernetes
|
||||
# requests
|
||||
uvicorn==0.31.0
|
||||
websocket-client==1.8.0
|
||||
# via kubernetes
|
||||
wrapt==1.16.0
|
||||
# via aiobotocore
|
||||
xlsxwriter==3.2.0
|
||||
yarl==1.13.1
|
||||
# via aiohttp
|
||||
@@ -1 +0,0 @@
|
||||
instance_id: 9a2d409d-a36a-492d-8f23-2f20c1f49bf4
|
||||
@@ -1,3 +0,0 @@
|
||||
from icecream import install
|
||||
|
||||
install()
|
||||
@@ -1,181 +0,0 @@
|
||||
from datetime import datetime
|
||||
from glob import glob
|
||||
|
||||
import duckdb
|
||||
import polars as pl
|
||||
import structlog
|
||||
from duckdb.typing import DATE, VARCHAR
|
||||
|
||||
from app.vinyl.plato.fetch import scrape_plato
|
||||
from app.vinyl.sounds.fetch import fetch_deals
|
||||
from app.vinyl.utils import parse_date
|
||||
from dagster import (
|
||||
DailyPartitionsDefinition,
|
||||
DimensionPartitionMapping,
|
||||
Failure,
|
||||
Field,
|
||||
IdentityPartitionMapping,
|
||||
MultiPartitionMapping,
|
||||
MultiPartitionsDefinition,
|
||||
OpExecutionContext,
|
||||
StaticPartitionsDefinition,
|
||||
TimeWindowPartitionMapping,
|
||||
asset,
|
||||
)
|
||||
|
||||
SOURCES = ["plato", "sounds"]
|
||||
|
||||
logger = structlog.get_logger()
|
||||
|
||||
partitions_def = MultiPartitionsDefinition(
|
||||
{
|
||||
"date": DailyPartitionsDefinition(start_date="2024-09-01", end_offset=1),
|
||||
"source": StaticPartitionsDefinition(SOURCES),
|
||||
}
|
||||
)
|
||||
|
||||
partition_mapping = MultiPartitionMapping(
|
||||
{
|
||||
"date": DimensionPartitionMapping(
|
||||
dimension_name="date",
|
||||
partition_mapping=TimeWindowPartitionMapping(start_offset=-1, end_offset=0),
|
||||
),
|
||||
"source": DimensionPartitionMapping(
|
||||
dimension_name="source",
|
||||
partition_mapping=IdentityPartitionMapping(),
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@asset(
|
||||
io_manager_key="polars_parquet_io_manager",
|
||||
partitions_def=partitions_def,
|
||||
metadata={
|
||||
"partition_by": ["date", "source"],
|
||||
},
|
||||
config_schema={
|
||||
"import_dir": Field(str, default_value="/opt/dagster/home/storage/import")
|
||||
},
|
||||
)
|
||||
def deals(context):
|
||||
ic()
|
||||
ic(context.partition_key)
|
||||
ic(context.op_config)
|
||||
import_dir = context.op_config["import_dir"]
|
||||
partition_key = context.partition_key.keys_by_dimension
|
||||
date_str = partition_key["date"]
|
||||
source = partition_key["source"]
|
||||
logger.info("Materializing deals", date=date_str, source=source)
|
||||
|
||||
date = datetime.strptime(partition_key["date"], "%Y-%m-%d")
|
||||
days = (date - datetime.today()).days
|
||||
ic(days)
|
||||
if days > 0:
|
||||
raise Failure(f"Cannot materialize for the future: {date.date()}")
|
||||
if days < -1:
|
||||
if source == "sounds":
|
||||
pattern = f"{import_dir}/{date.date()}_*_sounds.csv"
|
||||
logger.info("Looking for existing CSV files", pattern=pattern)
|
||||
files = glob(pattern)
|
||||
if len(files):
|
||||
file = sorted(files)[-1]
|
||||
logger.info("Using existing CSV file", file=file)
|
||||
try:
|
||||
df = pl.read_csv(file)
|
||||
logger.info("Loaded CSV file", rows=len(df))
|
||||
return df.with_columns(
|
||||
**{k: pl.lit(v) for k, v in partition_key.items()}
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error("Failed to load CSV file!", error=e)
|
||||
raise Failure(f"Cannot materialize for the past: {date.date()}")
|
||||
|
||||
if source == "plato":
|
||||
logger.info("Scraping Plato")
|
||||
df = scrape_plato()
|
||||
logger.info("Scraped Plato", rows=len(df), head=df.head().to_markdown())
|
||||
ic(df.columns)
|
||||
return pl.from_pandas(df.assign(**partition_key))
|
||||
if source == "sounds":
|
||||
logger.info("Scraping Sounds")
|
||||
df = fetch_deals()
|
||||
ic(df.columns)
|
||||
logger.info("Scraped Sounds", rows=len(df), head=df.head().to_markdown())
|
||||
return pl.from_pandas(df.assign(**partition_key))
|
||||
|
||||
return pl.DataFrame(
|
||||
[{"date": context.partition_key, "data": f"Data for {context.partition_key}"}]
|
||||
)
|
||||
|
||||
|
||||
@asset(deps=[deals], io_manager_key="polars_parquet_io_manager")
|
||||
def new_deals(context: OpExecutionContext) -> pl.DataFrame:
|
||||
ic()
|
||||
storage_dir = context.instance.storage_directory()
|
||||
asset_key = "deals"
|
||||
|
||||
with duckdb.connect() as con:
|
||||
con.create_function("PARSE_DATE", parse_date, [VARCHAR], DATE)
|
||||
return con.execute(
|
||||
f"""
|
||||
WITH tmp_plato AS (
|
||||
SELECT
|
||||
source,
|
||||
CAST(date AS DATE) AS date,
|
||||
ean AS id,
|
||||
_artist AS artist,
|
||||
LOWER(title) AS title,
|
||||
CAST(_date AS DATE) AS release,
|
||||
CAST(_price AS FLOAT) AS price,
|
||||
CONCAT('https://www.platomania.nl', url) AS url,
|
||||
FROM read_parquet('{storage_dir}/{asset_key}/*/plato.parquet', union_by_name = true)
|
||||
), tmp_sounds AS (
|
||||
SELECT
|
||||
source,
|
||||
date,
|
||||
id,
|
||||
LOWER(TRIM(COALESCE(artist, SPLIT(name, '-')[1]))) AS artist,
|
||||
LOWER(TRIM(COALESCE(title, ARRAY_TO_STRING(split(name, '-')[2:], '-')))) AS title,
|
||||
PARSE_DATE(release) AS release,
|
||||
CAST(price AS FLOAT) AS price,
|
||||
CONCAT('https://www.sounds.nl/detail/', id) AS url
|
||||
FROM read_parquet('{storage_dir}/{asset_key}/*/sounds.parquet', union_by_name = true)
|
||||
), tmp_both AS (
|
||||
SELECT * FROM tmp_plato UNION ALL SELECT * FROM tmp_sounds
|
||||
), tmp_rn AS (
|
||||
SELECT
|
||||
*,
|
||||
ROW_NUMBER() OVER(PARTITION BY source, id, artist, title, price ORDER BY date DESC) as rn
|
||||
FROM tmp_both
|
||||
)
|
||||
SELECT
|
||||
source,
|
||||
date,
|
||||
id,
|
||||
artist,
|
||||
title,
|
||||
release,
|
||||
price,
|
||||
url
|
||||
FROM tmp_rn
|
||||
WHERE rn = 1
|
||||
ORDER BY date ASC
|
||||
"""
|
||||
).pl()
|
||||
|
||||
|
||||
@asset(
|
||||
io_manager_key="polars_parquet_io_manager",
|
||||
)
|
||||
def works(new_deals: pl.DataFrame) -> pl.DataFrame:
|
||||
# Pandas
|
||||
# columns = ["artist", "title"]
|
||||
# return pl.from_pandas(new_deals[columns].to_pandas().drop_duplicates())
|
||||
|
||||
# Polars
|
||||
# return new_deals[columns].unique(subset=columns)
|
||||
|
||||
# DuckDB
|
||||
with duckdb.connect() as con:
|
||||
return con.execute("SELECT DISTINCT artist, title, release FROM new_deals").pl()
|
||||
@@ -1,58 +0,0 @@
|
||||
from dagster import (
|
||||
AssetKey,
|
||||
AssetMaterialization,
|
||||
OpExecutionContext,
|
||||
define_asset_job,
|
||||
job,
|
||||
op,
|
||||
)
|
||||
|
||||
from .assets import deals, new_deals, works
|
||||
|
||||
deals_job = define_asset_job(
|
||||
"deals_job", selection=[deals], partitions_def=deals.partitions_def
|
||||
)
|
||||
|
||||
|
||||
@op
|
||||
def check_partititions(context: OpExecutionContext):
|
||||
# Replace with your asset/job name
|
||||
asset_key = "deals"
|
||||
|
||||
context.log_event(
|
||||
AssetMaterialization(asset_key=asset_key, partition="2024-09-30|sounds")
|
||||
)
|
||||
|
||||
# Fetch the materializations for the asset key
|
||||
materializations = context.instance.get_materialized_partitions(
|
||||
asset_key=AssetKey(asset_key)
|
||||
)
|
||||
context.log.info("Existing partitions", extra=dict(partitions=materializations))
|
||||
|
||||
import polars as pl
|
||||
|
||||
storage_dir = context.instance.storage_directory()
|
||||
ic(storage_dir)
|
||||
for row in (
|
||||
pl.scan_parquet(f"{storage_dir}/{asset_key}/*/*.parquet")
|
||||
.select(["date", "source"])
|
||||
.unique()
|
||||
.collect()
|
||||
.iter_rows()
|
||||
):
|
||||
partition = "|".join(row)
|
||||
if partition not in materializations:
|
||||
context.log.info(f"Missing partition: {partition}")
|
||||
context.log_event(
|
||||
AssetMaterialization(asset_key=asset_key, partition=partition)
|
||||
)
|
||||
|
||||
|
||||
@job
|
||||
def check_partititions_job():
|
||||
check_partititions()
|
||||
|
||||
|
||||
musicbrainz_lookup_job = define_asset_job(
|
||||
"musicbrainz_lookup_job", selection=[works, new_deals]
|
||||
)
|
||||
@@ -1,154 +0,0 @@
|
||||
import os
|
||||
|
||||
import boto3
|
||||
import pandas as pd
|
||||
from botocore.exceptions import NoCredentialsError, PartialCredentialsError
|
||||
from dotenv import load_dotenv
|
||||
from fetch import scrape_plato
|
||||
from utils import get
|
||||
|
||||
|
||||
def update_database(articles_df=None, database_file="/home/user/plato.parquet"):
|
||||
if os.path.exists(database_file):
|
||||
database_df = pd.read_parquet(database_file)
|
||||
else:
|
||||
database_df = None
|
||||
|
||||
if articles_df is None:
|
||||
new_df = None if database_df is None else database_df.head(0)
|
||||
else:
|
||||
if database_df is None:
|
||||
articles_df.to_parquet(database_file)
|
||||
return articles_df, articles_df
|
||||
|
||||
compare = ["ean", "_price"]
|
||||
check_df = pd.merge(
|
||||
database_df[compare], articles_df[compare], how="right", indicator=True
|
||||
)
|
||||
new_df = (
|
||||
check_df[check_df["_merge"] == "right_only"]
|
||||
.drop(columns="_merge")
|
||||
.merge(articles_df)
|
||||
)
|
||||
database_df = (
|
||||
pd.concat([database_df, new_df])
|
||||
.sort_values("_date")
|
||||
.groupby("ean")
|
||||
.last()
|
||||
.reset_index()
|
||||
)
|
||||
database_df.to_parquet(database_file)
|
||||
|
||||
return database_df, new_df
|
||||
|
||||
|
||||
def send_email(lines):
|
||||
# Define the email parameters
|
||||
SENDER = "mail@veenboer.xyz"
|
||||
RECIPIENT = "rik.veenboer@gmail.com"
|
||||
SUBJECT = "Aanbieding op plato!"
|
||||
|
||||
# The email body for recipients with non-HTML email clients
|
||||
BODY_TEXT = ""
|
||||
|
||||
# The HTML body of the email
|
||||
tmp = "\n".join(lines)
|
||||
BODY_HTML = f"""<html>
|
||||
<head></head>
|
||||
<body>
|
||||
{tmp}
|
||||
</html>
|
||||
"""
|
||||
|
||||
# The character encoding for the email
|
||||
CHARSET = "UTF-8"
|
||||
|
||||
# Try to send the email
|
||||
try:
|
||||
client = boto3.client(
|
||||
"ses", region_name="eu-west-1"
|
||||
) # Change the region as needed
|
||||
|
||||
# Provide the contents of the email
|
||||
response = client.send_email(
|
||||
Destination={
|
||||
"ToAddresses": [
|
||||
RECIPIENT,
|
||||
],
|
||||
},
|
||||
Message={
|
||||
"Body": {
|
||||
"Html": {
|
||||
"Charset": CHARSET,
|
||||
"Data": BODY_HTML,
|
||||
},
|
||||
"Text": {
|
||||
"Charset": CHARSET,
|
||||
"Data": BODY_TEXT,
|
||||
},
|
||||
},
|
||||
"Subject": {
|
||||
"Charset": CHARSET,
|
||||
"Data": SUBJECT,
|
||||
},
|
||||
},
|
||||
Source=SENDER,
|
||||
)
|
||||
# Display an error if something goes wrong.
|
||||
except NoCredentialsError:
|
||||
print("Credentials not available")
|
||||
except PartialCredentialsError:
|
||||
print("Incomplete credentials provided")
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
else:
|
||||
print("Email sent! Message ID:"),
|
||||
print(response["MessageId"])
|
||||
|
||||
|
||||
def main(dry=False):
|
||||
load_dotenv("/opt/.env")
|
||||
|
||||
local_ip = get("http://ifconfig.me", False).text
|
||||
get_ip = get("http://ifconfig.me").text
|
||||
print(f"Local IP = {local_ip}")
|
||||
print(f"Request IP = {get_ip}")
|
||||
assert local_ip != get_ip
|
||||
|
||||
artists = open("/home/user/artists.txt").read().strip().splitlines()
|
||||
print(f"Number of known artists = {len(artists)}")
|
||||
|
||||
if dry:
|
||||
articles_df = None
|
||||
else:
|
||||
articles_df = scrape_plato(get=get)
|
||||
database_df, new_df = update_database(articles_df)
|
||||
|
||||
if dry:
|
||||
new_df = database_df.sample(20)
|
||||
|
||||
print(f"Database size = {len(database_df)}")
|
||||
print(f"New = {len(new_df)}")
|
||||
|
||||
# new_df = new_df[new_df['_artist'].isin(artists)].query('_price <= 25')
|
||||
new_df = new_df.query('_price <= 25 and ean != ""')
|
||||
print(f"Interesting = {len(new_df)}")
|
||||
|
||||
if new_df is not None and len(new_df):
|
||||
message = []
|
||||
for _, row in new_df.head(10).iterrows():
|
||||
message.append(
|
||||
f'<a href="https://www.platomania.nl{row.url}"><h1>NEW</h1></a>'
|
||||
)
|
||||
message.append("<ul>")
|
||||
message.append(f"<li>[artist] {row.artist}</li>")
|
||||
message.append(f"<li>[title] {row.title}</li>")
|
||||
message.append(f"<li>[price] {row.price}</li>")
|
||||
message.append(f"<li>[release] {row.release_date}</li>")
|
||||
message.append("</ul>")
|
||||
send_email(message)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cwd = os.path.dirname(__file__)
|
||||
main(dry=False)
|
||||
@@ -1,52 +0,0 @@
|
||||
#!/root/.pyenv/versions/dev/bin/python
|
||||
|
||||
import re
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from .scrape import get_soup, scrape_page, scrape_page_links
|
||||
|
||||
|
||||
def scrape_plato(get=None):
|
||||
ic()
|
||||
url = "https://www.platomania.nl/vinyl-aanbiedingen?page=1"
|
||||
|
||||
ic(url)
|
||||
soup = get_soup(url=url, get=get)
|
||||
articles_info = scrape_page(soup)
|
||||
ic(len(articles_info))
|
||||
|
||||
links = sorted(set(scrape_page_links(soup)), key=lambda x: int(x.split("=")[-1]))
|
||||
for link in links:
|
||||
ic(link)
|
||||
soup = get_soup(url=link, get=get)
|
||||
tmp = scrape_page(soup)
|
||||
ic(len(tmp))
|
||||
articles_info.extend(tmp)
|
||||
|
||||
def clean(name):
|
||||
tmp = " ".join(reversed(name.split(", ")))
|
||||
tmp = tmp.lower()
|
||||
tmp = re.sub(r"\s+\([^)]*\)", "", tmp)
|
||||
return tmp
|
||||
|
||||
articles_df = pd.DataFrame(articles_info).reindex(
|
||||
columns=[
|
||||
"artist",
|
||||
"title",
|
||||
"url",
|
||||
"label",
|
||||
"release_date",
|
||||
"origin",
|
||||
"item_number",
|
||||
"ean",
|
||||
"delivery_info",
|
||||
"price",
|
||||
]
|
||||
)
|
||||
articles_df["_artist"] = articles_df["artist"].map(clean)
|
||||
articles_df["_price"] = articles_df["price"].map(lambda x: float(x.split(" ")[-1]))
|
||||
articles_df["_date"] = datetime.now()
|
||||
|
||||
return articles_df
|
||||
@@ -1,79 +0,0 @@
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
def get_soup(url, get=None):
|
||||
# Send a GET request to the specified URL
|
||||
if get is None:
|
||||
get = requests.get
|
||||
response = get(url)
|
||||
|
||||
# Check if the request was successful
|
||||
if response.status_code == 200:
|
||||
# Parse the HTML content of the page
|
||||
return BeautifulSoup(response.content, "html.parser")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Failed to retrieve the page. Status code: {response.status_code}"
|
||||
)
|
||||
|
||||
|
||||
def scrape_page_links(soup):
|
||||
# Find all <li> elements with class "page-item"
|
||||
page_items = soup.find_all("li", class_="page-item")
|
||||
|
||||
# Extract the href attribute of <a> tags within these <li> elements
|
||||
links = []
|
||||
for item in page_items:
|
||||
a_tag = item.find("a", class_="page-link")
|
||||
if a_tag and "href" in a_tag.attrs:
|
||||
links.append(a_tag["href"])
|
||||
|
||||
return links
|
||||
|
||||
|
||||
def extract_article_info(article):
|
||||
info = {}
|
||||
|
||||
# Extract the artist name
|
||||
artist_tag = article.find("h1", class_="product-card__artist")
|
||||
info["artist"] = artist_tag.text.strip() if artist_tag else None
|
||||
|
||||
# Extract the title and URL
|
||||
title_tag = article.find("h2", class_="product-card__title")
|
||||
info["title"] = title_tag.text.strip() if title_tag else None
|
||||
url_tag = title_tag.find_parent("a") if title_tag else None
|
||||
info["url"] = url_tag["href"] if url_tag else None
|
||||
|
||||
# Extract additional details
|
||||
details = article.find_all("div", class_="article-details__text")
|
||||
for detail in details:
|
||||
text = detail.text.strip()
|
||||
if "Label:" in text:
|
||||
info["label"] = text.replace("Label: ", "").strip()
|
||||
elif "Releasedatum:" in text:
|
||||
info["release_date"] = text.replace("Releasedatum: ", "").strip()
|
||||
elif "Herkomst:" in text:
|
||||
info["origin"] = text.replace("Herkomst: ", "").strip()
|
||||
elif "Item-nr:" in text:
|
||||
info["item_number"] = text.replace("Item-nr: ", "").strip()
|
||||
elif "EAN:" in text:
|
||||
info["ean"] = text.replace("EAN:", "").strip()
|
||||
|
||||
# Extract delivery information
|
||||
delivery_tag = article.find("div", class_="article-details__delivery-text")
|
||||
info["delivery_info"] = delivery_tag.text.strip() if delivery_tag else None
|
||||
|
||||
# Extract price
|
||||
price_tag = article.find("div", class_="article__price")
|
||||
info["price"] = price_tag.text.strip() if price_tag else None
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def scrape_page(soup):
|
||||
# Find all article blocks
|
||||
article_blocks = soup.find_all("article", class_="article LP")
|
||||
|
||||
# Extract information from each article block
|
||||
return [extract_article_info(article) for article in article_blocks]
|
||||
@@ -1,10 +0,0 @@
|
||||
import requests
|
||||
|
||||
|
||||
def get(url, proxy=True):
|
||||
if proxy:
|
||||
tmp = "socks5://localhost:1080"
|
||||
kwargs = dict(proxies=dict(http=tmp, https=tmp))
|
||||
else:
|
||||
kwargs = {}
|
||||
return requests.get(url, **kwargs)
|
||||
@@ -1,31 +0,0 @@
|
||||
from collections.abc import Sequence
|
||||
|
||||
from dagster_duckdb import DuckDBIOManager
|
||||
from dagster_duckdb.io_manager import DbTypeHandler
|
||||
from dagster_duckdb_pandas import DuckDBPandasTypeHandler
|
||||
from dagster_polars import PolarsParquetIOManager
|
||||
|
||||
from dagster import Definitions
|
||||
|
||||
from .assets import deals, new_deals, works
|
||||
from .jobs import check_partititions_job, deals_job, musicbrainz_lookup_job
|
||||
from .schedules import deals_schedule
|
||||
from .sensors import musicbrainz_lookup_sensor
|
||||
|
||||
|
||||
class PandasDuckDBIOManager(DuckDBIOManager):
|
||||
@staticmethod
|
||||
def type_handlers() -> Sequence[DbTypeHandler]:
|
||||
return [DuckDBPandasTypeHandler()]
|
||||
|
||||
|
||||
vinyl = Definitions(
|
||||
assets=[deals, new_deals, works],
|
||||
resources={
|
||||
"polars_parquet_io_manager": PolarsParquetIOManager(),
|
||||
"duckdb_io_manager": PandasDuckDBIOManager(database="vinyl"),
|
||||
},
|
||||
jobs=[deals_job, check_partititions_job, musicbrainz_lookup_job],
|
||||
schedules=[deals_schedule],
|
||||
sensors=[musicbrainz_lookup_sensor],
|
||||
)
|
||||
@@ -1,10 +0,0 @@
|
||||
from dagster import DefaultScheduleStatus, build_schedule_from_partitioned_job
|
||||
|
||||
from app.vinyl.repo import deals_job
|
||||
|
||||
deals_schedule = build_schedule_from_partitioned_job(
|
||||
job=deals_job,
|
||||
hour_of_day=7,
|
||||
# execution_timezone="Europe/Amsterdam",
|
||||
default_status=DefaultScheduleStatus.RUNNING,
|
||||
)
|
||||
@@ -1,21 +0,0 @@
|
||||
from app.vinyl.assets import deals
|
||||
from app.vinyl.jobs import musicbrainz_lookup_job
|
||||
from dagster import (
|
||||
DefaultSensorStatus,
|
||||
EventLogEntry,
|
||||
RunRequest,
|
||||
SensorEvaluationContext,
|
||||
asset_sensor,
|
||||
)
|
||||
|
||||
|
||||
@asset_sensor(
|
||||
asset_key=deals.key,
|
||||
job=musicbrainz_lookup_job,
|
||||
default_status=DefaultSensorStatus.RUNNING,
|
||||
)
|
||||
def musicbrainz_lookup_sensor(
|
||||
context: SensorEvaluationContext, asset_event: EventLogEntry
|
||||
):
|
||||
assert asset_event.dagster_event and asset_event.dagster_event.asset_key
|
||||
yield RunRequest(run_key=context.cursor)
|
||||
@@ -1,80 +0,0 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import glob
|
||||
import os
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def get_csvs(directory, n):
|
||||
# List all files matching the pattern *_sounds.csv
|
||||
suffix = "_sounds.csv"
|
||||
files = glob.glob(os.path.join(directory, f"*{suffix}"))
|
||||
|
||||
# Function to extract date from filename
|
||||
def extract_date_from_filename(filename):
|
||||
# Extract the date string
|
||||
basename = os.path.basename(filename)
|
||||
date_str = basename.split(suffix)[0]
|
||||
try:
|
||||
return datetime.strptime(date_str, "%Y-%m-%d_%H:%M:%S")
|
||||
except ValueError:
|
||||
# The date string cannot be parsed
|
||||
return None
|
||||
|
||||
# Create a list of tuples (date, filename), ignoring files with unparsable dates
|
||||
result = [(extract_date_from_filename(file), file) for file in files]
|
||||
result = [item for item in result if item[0] is not None]
|
||||
|
||||
# Sort the list by date in descending order (most recent first)
|
||||
result.sort(key=lambda x: x[0], reverse=True)
|
||||
|
||||
# Return the two most recent files
|
||||
return [x[1] for x in result[:n]]
|
||||
|
||||
|
||||
def analyze(df1, df2):
|
||||
df1 = df1.drop_duplicates(subset="id")
|
||||
df2 = df2.drop_duplicates(subset="id")
|
||||
combined_df = pd.merge(
|
||||
df1[["id", "price"]], df2, on="id", how="right", indicator=True
|
||||
)
|
||||
combined_df["discount"] = combined_df.price_y - combined_df.price_x
|
||||
combined_df.drop(columns=["price_x"], inplace=True)
|
||||
combined_df.rename(columns={"price_y": "price"}, inplace=True)
|
||||
|
||||
deals = combined_df.query("discount < 0").sort_values(by="discount")[
|
||||
["id", "name", "price", "discount"]
|
||||
]
|
||||
new = combined_df.query("_merge == 'right_only'").sort_values(by="price")[
|
||||
["id", "name", "price"]
|
||||
]
|
||||
return deals, new
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
csvs = get_csvs(".", 100)
|
||||
|
||||
for i in range(1, len(csvs)):
|
||||
print(f"Comparing {csvs[i]} with {csvs[0]}")
|
||||
df_previous = pd.read_csv(csvs[i], index_col=0)
|
||||
df_latest = pd.read_csv(csvs[0], index_col=0)
|
||||
deals, new = analyze(df_previous, df_latest)
|
||||
|
||||
done = False
|
||||
|
||||
if len(deals) > 0:
|
||||
print()
|
||||
print("New items:")
|
||||
print(new)
|
||||
print()
|
||||
done = True
|
||||
|
||||
if len(deals) > 0:
|
||||
print(f"Discounted items:")
|
||||
print(deals)
|
||||
done = True
|
||||
|
||||
if done:
|
||||
break
|
||||
@@ -1,110 +0,0 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import time
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_page_count(html_content):
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
|
||||
# Find all pagination links
|
||||
page_links = soup.select("ul.pagination li a")
|
||||
|
||||
# Extract the numbers from the hrefs and convert to integers
|
||||
page_numbers = [
|
||||
int(link.get_text()) for link in page_links if link.get_text().isdigit()
|
||||
]
|
||||
|
||||
return max(page_numbers)
|
||||
|
||||
|
||||
def parse_page(html_content):
|
||||
entries = []
|
||||
soup = BeautifulSoup(html_content, "html.parser")
|
||||
for product in soup.find_all("div", {"class": "search-product"}):
|
||||
item_id = product.find("a", rel=True)["rel"][0]
|
||||
name = product.find("h5").text.strip()
|
||||
artist_title = name.split("-")
|
||||
artist = artist_title[0].strip()
|
||||
title = artist_title[1].strip()
|
||||
price = (
|
||||
product.find("span", class_="product-price")
|
||||
.text.strip()
|
||||
.replace("€", "")
|
||||
.strip()
|
||||
)
|
||||
|
||||
entry = {
|
||||
"id": item_id,
|
||||
"name": name,
|
||||
"artist": artist,
|
||||
"title": title,
|
||||
"price": price,
|
||||
}
|
||||
if detail := product.find("h6", {"class": "hide-for-small"}):
|
||||
entry["detail"] = detail.text
|
||||
if supply := product.find("div", {"class": "product-voorraad"}):
|
||||
entry["supply"] = supply.text
|
||||
|
||||
for info in product.find_all("div", {"class": "product-info"}):
|
||||
info = info.text.split(":")
|
||||
if "Genre" in info[0]:
|
||||
entry["genre"] = info[1].strip()
|
||||
if "Releasedatum" in info[0]:
|
||||
entry["release"] = info[1].strip()
|
||||
entries.append(entry)
|
||||
|
||||
return pd.DataFrame(entries).reindex(
|
||||
columns=[
|
||||
"id",
|
||||
"name",
|
||||
"artist",
|
||||
"title",
|
||||
"price",
|
||||
"supply",
|
||||
"release",
|
||||
"genre",
|
||||
"detail",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def fetch_deals():
|
||||
# Get page count
|
||||
page_count = get_page_count(
|
||||
requests.get("https://www.sounds.nl/uitverkoop/1/lp/all/art").text
|
||||
)
|
||||
time.sleep(1)
|
||||
print(f"Number of pages: {page_count}")
|
||||
|
||||
# Parse all pages
|
||||
base_url = "https://www.sounds.nl/uitverkoop/{page_number}/lp/all"
|
||||
dfs = []
|
||||
for i in tqdm(range(page_count)):
|
||||
df = parse_page(requests.get(base_url.format(page_number=i)).text)
|
||||
dfs.append(df)
|
||||
time.sleep(2)
|
||||
|
||||
# Combine dfs
|
||||
return pd.concat(dfs) if dfs else pd.DataFrame(columns=["id", "name", "price"])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
df = fetch_deals()
|
||||
print(f"Found {len(df)} deals")
|
||||
|
||||
# Show current deals
|
||||
print(df.sort_values(by="price").head(10))
|
||||
|
||||
# Write to file
|
||||
now = datetime.now()
|
||||
prefix = now.strftime("%Y-%m-%d_%H:%M:%S")
|
||||
directory = "/home/bram/src/python"
|
||||
filepath = f"{directory}/{prefix}_sounds.csv"
|
||||
print(f"Writing data to {filepath}")
|
||||
df.to_csv(filepath)
|
||||
@@ -1,41 +0,0 @@
|
||||
import warnings
|
||||
from datetime import datetime
|
||||
|
||||
from dagster import materialize
|
||||
from dagster_polars import PolarsParquetIOManager
|
||||
|
||||
from app.vinyl.assets import deals
|
||||
from app.vinyl.jobs import check_partititions_job
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
|
||||
import logging
|
||||
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
resources = {
|
||||
"polars_parquet_io_manager": PolarsParquetIOManager(base_dir="/opt/dagster/storage")
|
||||
}
|
||||
|
||||
|
||||
def test_deals(source="sounds", date: str = None):
|
||||
if not date:
|
||||
today = datetime.today().strftime("%Y-%m-%d")
|
||||
date = today
|
||||
|
||||
result = materialize(
|
||||
[deals],
|
||||
partition_key=f"{date}|{source}",
|
||||
resources=resources,
|
||||
run_config={
|
||||
"loggers": {"console": {"config": {"log_level": "ERROR"}}},
|
||||
"ops": {"deals": {"config": {"import_dir": "/opt/dagster/storage/import"}}},
|
||||
},
|
||||
)
|
||||
assert result.success
|
||||
ic(result.asset_value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_deals(source="plato")
|
||||
check_partititions_job.execute_in_process()
|
||||
@@ -1,29 +0,0 @@
|
||||
import datetime
|
||||
|
||||
|
||||
def parse_date(dutch_date: str):
|
||||
# Create a dictionary to map Dutch month names to English
|
||||
dutch_to_english_months = {
|
||||
"januari": "January",
|
||||
"februari": "February",
|
||||
"maart": "March",
|
||||
"april": "April",
|
||||
"mei": "May",
|
||||
"juni": "June",
|
||||
"juli": "July",
|
||||
"augustus": "August",
|
||||
"september": "September",
|
||||
"oktober": "October",
|
||||
"november": "November",
|
||||
"december": "December",
|
||||
}
|
||||
|
||||
# Split the date and replace the Dutch month with its English equivalent
|
||||
day, dutch_month, year = dutch_date.split()
|
||||
english_month = dutch_to_english_months[dutch_month]
|
||||
|
||||
# Rebuild the date string in English format
|
||||
english_date = f"{day} {english_month} {year}"
|
||||
|
||||
# Parse the date using strptime
|
||||
return datetime.datetime.strptime(english_date, "%d %B %Y").date()
|
||||
@@ -1 +0,0 @@
|
||||
from app.vinyl.repo import vinyl # noqa
|
||||
@@ -1,4 +0,0 @@
|
||||
load_from:
|
||||
- grpc_server:
|
||||
host: user_code
|
||||
port: 4000
|
||||
Reference in New Issue
Block a user