Compare commits
11 Commits
extend-ci
...
32-set-avx
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5f740f5fbf | ||
|
|
03723c2d3b | ||
|
|
027457f560 | ||
|
|
5f00c5d304 | ||
|
|
f85e67e669 | ||
|
|
76998a137a | ||
|
|
500d35070e | ||
|
|
bfe752433f | ||
|
|
8fe8314905 | ||
|
|
9d3af8c202 | ||
|
|
0f7fd06be8 |
15
.github/workflows/test.yml
vendored
15
.github/workflows/test.yml
vendored
@@ -13,6 +13,11 @@ jobs:
|
||||
gres: gpu:A4000
|
||||
cmake_flags: "-DTRIGDX_USE_MKL=1 -DTRIGDX_USE_GPU=1 -DTRIGDX_USE_MKL=1 -DTRIGDX_USE_XSIMD=1 -DCMAKE_CUDA_ARCHITECTURES=86"
|
||||
environment_modules: "spack/20250403 intel-oneapi-mkl cuda python"
|
||||
- name: Intel, NVIDIA A4000
|
||||
partition: defq
|
||||
gres: gpu:A4000
|
||||
cmake_flags: "-DTRIGDX_USE_MKL=1 -DTRIGDX_USE_GPU=1 -DTRIGDX_USE_MKL=1 -DTRIGDX_USE_XSIMD=1 -DCMAKE_CUDA_ARCHITECTURES=86"
|
||||
environment_modules: "spack/20250403 intel-oneapi-compilers intel-oneapi-mkl cuda python"
|
||||
- name: NVIDIA GH200
|
||||
partition: ghq
|
||||
gres: gpu:GH200
|
||||
@@ -38,7 +43,7 @@ jobs:
|
||||
cmake -S . -B build ${CMAKE_FLAGS}
|
||||
make -C build -j
|
||||
- name: Upload build
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: pyTooling/upload-artifact@v4
|
||||
with:
|
||||
name: build-${{ matrix.name }}
|
||||
path: build
|
||||
@@ -53,7 +58,7 @@ jobs:
|
||||
PARTITION_NAME: ${{ matrix.partition }}
|
||||
steps:
|
||||
- *cleanup
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: pyTooling/download-artifact@v4
|
||||
with:
|
||||
name: build-${{ matrix.name }}
|
||||
- uses: astron-rd/slurm-action@v1.2
|
||||
@@ -61,7 +66,7 @@ jobs:
|
||||
partition: ${{ matrix.partition }}
|
||||
gres: ${{ matrix.gres }}
|
||||
commands: |
|
||||
find tests -type f -executable -exec {} \;
|
||||
find build/tests -type f -executable -exec {} \;
|
||||
|
||||
benchmark:
|
||||
runs-on: [slurm]
|
||||
@@ -73,7 +78,7 @@ jobs:
|
||||
PARTITION_NAME: ${{ matrix.partition }}
|
||||
steps:
|
||||
- *cleanup
|
||||
- uses: actions/download-artifact@v4
|
||||
- uses: pyTooling/download-artifact@v4
|
||||
with:
|
||||
name: build-${{ matrix.name }}
|
||||
- uses: astron-rd/slurm-action@v1.2
|
||||
@@ -81,4 +86,4 @@ jobs:
|
||||
partition: ${{ matrix.partition }}
|
||||
gres: ${{ matrix.gres }}
|
||||
commands: |
|
||||
find benchmarks -type f -executable -exec {} \;
|
||||
find build/benchmarks -type f -executable -exec {} \;
|
||||
|
||||
@@ -8,3 +8,4 @@ repos:
|
||||
hooks:
|
||||
- id: cmake-format
|
||||
- id: cmake-lint
|
||||
args: [--disabled-codes=C0301]
|
||||
|
||||
@@ -12,6 +12,11 @@ option(TRIGDX_BUILD_TESTS "Build tests" ON)
|
||||
option(TRIGDX_BUILD_BENCHMARKS "Build tests" ON)
|
||||
option(TRIGDX_BUILD_PYTHON "Build Python interface" ON)
|
||||
|
||||
# Add compiler flags
|
||||
set(CMAKE_CXX_FLAGS
|
||||
"${CMAKE_CXX_FLAGS} -Wall -Wnon-virtual-dtor -Wduplicated-branches -Wvla -Wpointer-arith -Wextra -Wno-unused-parameter"
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
configure_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/trigdx_config.hpp.in
|
||||
|
||||
54
README.md
Normal file
54
README.md
Normal file
@@ -0,0 +1,54 @@
|
||||
# TrigDx
|
||||
|
||||
High‑performance C++ library offering multiple implementations of transcendental trigonometric functions (e.g., sin, cos, tan and their variants), designed for numerical, signal‑processing, and real‑time systems where trading a small loss of accuracy for significantly higher throughput on modern CPUs (scalar and SIMD) and NVIDIA GPUs is acceptable.
|
||||
|
||||
## Why TrigDx?
|
||||
Many applications use the standard library implementations, which prioritise correctness but are not always optimal for throughput on vectorized or GPU hardware. TrigDx gives you multiple implementations so you can:
|
||||
|
||||
- Replace `std::sin` / `std::cos` calls with faster approximations when a small, bounded reduction in accuracy is acceptable.
|
||||
- Use SIMD/vectorized implementations and compact lookup tables for high throughput lookups.
|
||||
- Run massively parallel kernels that take advantage of a GPU's _Special Function Units_ (SFUs).
|
||||
|
||||
## Requirements
|
||||
- A C++ compiler with at least C++17 support (GCC, Clang)
|
||||
- CMake 3.15+
|
||||
- Optional: NVIDIA CUDA Toolkit 11+ to build GPU kernels
|
||||
- Optional: GoogleTest (for unit tests) and GoogleBenchmark (for microbenchmarks)
|
||||
|
||||
## Building
|
||||
```bash
|
||||
git clone https://github.com/astron-rd/TrigDx.git
|
||||
cd TrigDx
|
||||
mkdir build && cd build
|
||||
|
||||
# CPU-only:
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_XSIMD=ON ..
|
||||
cmake --build . -j
|
||||
|
||||
# Enable CUDA (if available):
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_GPU=ON ..
|
||||
cmake --build . -j
|
||||
|
||||
# Run tests:
|
||||
ctest --output-on-failure -j
|
||||
```
|
||||
|
||||
Common CMake options:
|
||||
- `TRIGDX_USE_GPU=ON/OFF` — build GPU support.
|
||||
- `TRIGDX_BUILD_TESTS=ON/OFF` — build tests.
|
||||
- `TRIGDX_BUILD_BENCHMARKS=ON/OFF` — build benchmarks.
|
||||
- `TRIGDX_BUILD_PYTHON` — build Python interface.
|
||||
|
||||
## Contributing
|
||||
- Fork → create a feature branch → open a PR.
|
||||
- Include unit tests for correctness‑sensitive changes and benchmark results for performance changes.
|
||||
- Follow project style (clang‑format) and run tests locally before submitting.
|
||||
|
||||
## Reporting issues
|
||||
When opening an issue for incorrect results or performance regressions, please include:
|
||||
- Platform and CPU/GPU model.
|
||||
- Compiler and version with exact compile flags.
|
||||
- Small reproducer (input data and the TrigDx implementation used).
|
||||
|
||||
## License
|
||||
See the LICENSE file in the repository for licensing details.
|
||||
@@ -2,13 +2,14 @@
|
||||
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <benchmark/benchmark.h>
|
||||
|
||||
void init_x(std::vector<float> &x) {
|
||||
for (size_t i = 0; i < x.size(); ++i) {
|
||||
void init_x(float *x, size_t n) {
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
x[i] = (i % 360) * 0.0174533f; // degrees to radians
|
||||
}
|
||||
}
|
||||
@@ -16,24 +17,31 @@ void init_x(std::vector<float> &x) {
|
||||
template <typename Backend>
|
||||
static void benchmark_sinf(benchmark::State &state) {
|
||||
const size_t N = static_cast<size_t>(state.range(0));
|
||||
std::vector<float> x(N), s(N);
|
||||
init_x(x);
|
||||
|
||||
Backend backend;
|
||||
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
backend.init(N);
|
||||
float *x =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
float *s =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
state.counters["init_ms"] =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start)
|
||||
.count() /
|
||||
1.e3;
|
||||
|
||||
init_x(x, N);
|
||||
|
||||
for (auto _ : state) {
|
||||
backend.compute_sinf(N, x.data(), s.data());
|
||||
backend.compute_sinf(N, x, s);
|
||||
benchmark::DoNotOptimize(s);
|
||||
}
|
||||
|
||||
backend.free_memory(x);
|
||||
backend.free_memory(s);
|
||||
|
||||
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
|
||||
static_cast<int64_t>(N));
|
||||
}
|
||||
@@ -41,24 +49,35 @@ static void benchmark_sinf(benchmark::State &state) {
|
||||
template <typename Backend>
|
||||
static void benchmark_cosf(benchmark::State &state) {
|
||||
const size_t N = static_cast<size_t>(state.range(0));
|
||||
std::vector<float> x(N), c(N);
|
||||
init_x(x);
|
||||
|
||||
Backend backend;
|
||||
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
backend.init(N);
|
||||
float *x =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
float *c =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
|
||||
if (!x || !c) {
|
||||
throw std::runtime_error("Buffer allocation failed");
|
||||
}
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
state.counters["init_ms"] =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start)
|
||||
.count() /
|
||||
1.e3;
|
||||
|
||||
init_x(x, N);
|
||||
|
||||
for (auto _ : state) {
|
||||
backend.compute_cosf(N, x.data(), c.data());
|
||||
backend.compute_cosf(N, x, c);
|
||||
benchmark::DoNotOptimize(c);
|
||||
}
|
||||
|
||||
backend.free_memory(x);
|
||||
backend.free_memory(c);
|
||||
|
||||
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
|
||||
static_cast<int64_t>(N));
|
||||
}
|
||||
@@ -66,25 +85,38 @@ static void benchmark_cosf(benchmark::State &state) {
|
||||
template <typename Backend>
|
||||
static void benchmark_sincosf(benchmark::State &state) {
|
||||
const size_t N = static_cast<size_t>(state.range(0));
|
||||
std::vector<float> x(N), s(N), c(N);
|
||||
init_x(x);
|
||||
|
||||
Backend backend;
|
||||
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
backend.init(N);
|
||||
float *x =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
float *s =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
float *c =
|
||||
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
|
||||
if (!x || !s || !c) {
|
||||
throw std::runtime_error("Buffer allocation failed");
|
||||
}
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
state.counters["init_ms"] =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start)
|
||||
.count() /
|
||||
1.e3;
|
||||
|
||||
init_x(x, N);
|
||||
|
||||
for (auto _ : state) {
|
||||
backend.compute_sincosf(N, x.data(), s.data(), c.data());
|
||||
backend.compute_sincosf(N, x, s, c);
|
||||
benchmark::DoNotOptimize(s);
|
||||
benchmark::DoNotOptimize(c);
|
||||
}
|
||||
|
||||
backend.free_memory(x);
|
||||
backend.free_memory(s);
|
||||
backend.free_memory(c);
|
||||
|
||||
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
|
||||
static_cast<int64_t>(N));
|
||||
}
|
||||
|
||||
@@ -11,7 +11,8 @@ public:
|
||||
GPUBackend();
|
||||
~GPUBackend() override;
|
||||
|
||||
void init(size_t n = 0) override;
|
||||
void *allocate_memory(size_t bytes) const override;
|
||||
void free_memory(void *ptr) const override;
|
||||
void compute_sinf(size_t n, const float *x, float *s) const override;
|
||||
void compute_cosf(size_t n, const float *x, float *c) const override;
|
||||
void compute_sincosf(size_t n, const float *x, float *s,
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
|
||||
// Base interface for all math backends
|
||||
class Backend {
|
||||
@@ -10,6 +12,12 @@ public:
|
||||
// Optional initialization
|
||||
virtual void init(size_t n = 0) {}
|
||||
|
||||
virtual void *allocate_memory(size_t bytes) const {
|
||||
return static_cast<void *>(new uint8_t[bytes]);
|
||||
};
|
||||
|
||||
virtual void free_memory(void *ptr) const { std::free(ptr); };
|
||||
|
||||
// Compute sine for n elements
|
||||
virtual void compute_sinf(size_t n, const float *x, float *s) const = 0;
|
||||
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
if(NOT TARGET pybind11)
|
||||
find_package(pybind11 CONFIG QUIET)
|
||||
|
||||
if(NOT pybind11_FOUND)
|
||||
FetchContent_Declare(
|
||||
pybind11
|
||||
GIT_REPOSITORY https://github.com/pybind/pybind11.git
|
||||
@@ -6,5 +8,16 @@ if(NOT TARGET pybind11)
|
||||
FetchContent_MakeAvailable(pybind11)
|
||||
endif()
|
||||
|
||||
# Needed to set ${Python_VERSION_MAJOR} and ${Python_VERSION_MINOR}
|
||||
find_package(Python REQUIRED)
|
||||
|
||||
pybind11_add_module(pytrigdx bindings.cpp)
|
||||
target_link_libraries(pytrigdx PRIVATE trigdx)
|
||||
set_target_properties(pytrigdx PROPERTIES OUTPUT_NAME "trigdx")
|
||||
|
||||
set(PYTHON_SITE_PACKAGES
|
||||
"${CMAKE_INSTALL_LIBDIR}/python${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}/site-packages/trigdx"
|
||||
)
|
||||
|
||||
install(TARGETS pytrigdx DESTINATION ${PYTHON_SITE_PACKAGES})
|
||||
install(FILES __init__.py DESTINATION ${PYTHON_SITE_PACKAGES})
|
||||
|
||||
16
python/__init__.py
Normal file
16
python/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
from .trigdx import Reference, Lookup16K, Lookup32K, LookupAVX16K, LookupAVX32K
|
||||
|
||||
try:
|
||||
from .trigdx import MKL
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from .trigdx import GPU
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from .trigdx import LookupXSIMD16K, LookupXSIMD32K
|
||||
except ImportError:
|
||||
pass
|
||||
@@ -72,7 +72,9 @@ void bind_backend(py::module &m, const char *name) {
|
||||
.def("compute_sincosf", &compute_sincos<float>);
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(pytrigdx, m) {
|
||||
PYBIND11_MODULE(trigdx, m) {
|
||||
m.doc() = "TrigDx python bindings";
|
||||
|
||||
py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend")
|
||||
.def("init", &Backend::init);
|
||||
|
||||
|
||||
@@ -2,6 +2,24 @@ include(FetchContent)
|
||||
include(FindAVX)
|
||||
add_library(trigdx reference.cpp lookup.cpp)
|
||||
|
||||
if(HAVE_AVX2)
|
||||
target_compile_definitions(trigdx PUBLIC HAVE_AVX2)
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
|
||||
"IntelLLVM")
|
||||
target_compile_options(trigdx PUBLIC -xCORE-AVX2)
|
||||
else()
|
||||
target_compile_options(trigdx PUBLIC -mavx2)
|
||||
endif()
|
||||
elseif(HAVE_AVX)
|
||||
target_compile_definitions(trigdx PUBLIC HAVE_AVX)
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
|
||||
"IntelLLVM")
|
||||
target_compile_options(trigdx PUBLIC -xAVX)
|
||||
else()
|
||||
target_compile_options(trigdx PUBLIC -mavx)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
target_include_directories(trigdx PUBLIC ${PROJECT_SOURCE_DIR}/include)
|
||||
|
||||
if(HAVE_AVX)
|
||||
|
||||
84
src/gpu.cpp
84
src/gpu.cpp
@@ -10,79 +10,63 @@
|
||||
|
||||
struct GPUBackend::Impl {
|
||||
|
||||
~Impl() {
|
||||
if (h_x) {
|
||||
cudaFreeHost(h_x);
|
||||
}
|
||||
if (h_s) {
|
||||
cudaFreeHost(h_s);
|
||||
}
|
||||
if (h_c) {
|
||||
cudaFreeHost(h_c);
|
||||
}
|
||||
if (d_x) {
|
||||
cudaFree(d_x);
|
||||
}
|
||||
if (d_s) {
|
||||
cudaFree(d_s);
|
||||
}
|
||||
if (d_c) {
|
||||
cudaFree(d_c);
|
||||
}
|
||||
void *allocate_memory(size_t bytes) const {
|
||||
void *ptr;
|
||||
cudaMallocHost(&ptr, bytes);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void init(size_t n) {
|
||||
const size_t bytes = n * sizeof(float);
|
||||
cudaMallocHost(&h_x, bytes);
|
||||
cudaMallocHost(&h_s, bytes);
|
||||
cudaMallocHost(&h_c, bytes);
|
||||
cudaMalloc(&d_x, bytes);
|
||||
cudaMalloc(&d_s, bytes);
|
||||
cudaMalloc(&d_c, bytes);
|
||||
}
|
||||
void free_memory(void *ptr) const { cudaFreeHost(ptr); }
|
||||
|
||||
void compute_sinf(size_t n, const float *x, float *s) const {
|
||||
const size_t bytes = n * sizeof(float);
|
||||
std::memcpy(h_x, x, bytes);
|
||||
cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
|
||||
float *d_x, *d_s;
|
||||
cudaMalloc(&d_x, bytes);
|
||||
cudaMalloc(&d_s, bytes);
|
||||
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
|
||||
launch_sinf_kernel(d_x, d_s, n);
|
||||
cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
|
||||
std::memcpy(s, h_s, bytes);
|
||||
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost);
|
||||
cudaFree(d_x);
|
||||
cudaFree(d_s);
|
||||
}
|
||||
|
||||
void compute_cosf(size_t n, const float *x, float *c) const {
|
||||
const size_t bytes = n * sizeof(float);
|
||||
std::memcpy(h_x, x, bytes);
|
||||
cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
|
||||
float *d_x, *d_c;
|
||||
cudaMalloc(&d_x, bytes);
|
||||
cudaMalloc(&d_c, bytes);
|
||||
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
|
||||
launch_cosf_kernel(d_x, d_c, n);
|
||||
cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
|
||||
std::memcpy(c, h_c, bytes);
|
||||
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost);
|
||||
cudaFree(d_x);
|
||||
cudaFree(d_c);
|
||||
}
|
||||
|
||||
void compute_sincosf(size_t n, const float *x, float *s, float *c) const {
|
||||
const size_t bytes = n * sizeof(float);
|
||||
std::memcpy(h_x, x, bytes);
|
||||
cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
|
||||
float *d_x, *d_s, *d_c;
|
||||
cudaMalloc(&d_x, bytes);
|
||||
cudaMalloc(&d_s, bytes);
|
||||
cudaMalloc(&d_c, bytes);
|
||||
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
|
||||
launch_sincosf_kernel(d_x, d_s, d_c, n);
|
||||
cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
|
||||
std::memcpy(s, h_s, bytes);
|
||||
std::memcpy(c, h_c, bytes);
|
||||
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost);
|
||||
cudaFree(d_x);
|
||||
cudaFree(d_s);
|
||||
cudaFree(d_c);
|
||||
}
|
||||
|
||||
float *h_x = nullptr;
|
||||
float *h_s = nullptr;
|
||||
float *h_c = nullptr;
|
||||
float *d_x = nullptr;
|
||||
float *d_s = nullptr;
|
||||
float *d_c = nullptr;
|
||||
};
|
||||
|
||||
GPUBackend::GPUBackend() : impl(std::make_unique<Impl>()) {}
|
||||
|
||||
GPUBackend::~GPUBackend() = default;
|
||||
|
||||
void GPUBackend::init(size_t n) { impl->init(n); }
|
||||
void *GPUBackend::allocate_memory(size_t bytes) const {
|
||||
return impl->allocate_memory(bytes);
|
||||
}
|
||||
|
||||
void GPUBackend::free_memory(void *ptr) const { impl->free_memory(ptr); }
|
||||
|
||||
void GPUBackend::compute_sinf(size_t n, const float *x, float *s) const {
|
||||
impl->compute_sinf(n, x, s);
|
||||
|
||||
@@ -6,6 +6,16 @@
|
||||
|
||||
#include "trigdx/lookup_avx.hpp"
|
||||
|
||||
#if defined(HAVE_AVX) && !defined(__AVX__)
|
||||
static_assert(HAVE_AVX == 0, "__AVX__ should be defined when HAVE_AVX is "
|
||||
"defined");
|
||||
#endif
|
||||
|
||||
#if defined(HAVE_AVX2) && !defined(__AVX2__)
|
||||
static_assert(HAVE_AVX2 == 0, "__AVX2__ should be defined when HAVE_AVX2 is "
|
||||
"defined");
|
||||
#endif
|
||||
|
||||
template <std::size_t NR_SAMPLES> struct LookupAVXBackend<NR_SAMPLES>::Impl {
|
||||
std::vector<float> lookup;
|
||||
static constexpr std::size_t MASK = NR_SAMPLES - 1;
|
||||
|
||||
@@ -20,8 +20,8 @@ template <std::size_t NR_SAMPLES> struct lookup_table {
|
||||
cos_values[i] = cosf(i * PI_FRAC);
|
||||
}
|
||||
}
|
||||
std::array<float, NR_SAMPLES> cos_values;
|
||||
std::array<float, NR_SAMPLES> sin_values;
|
||||
std::array<float, NR_SAMPLES> cos_values;
|
||||
};
|
||||
|
||||
template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
@@ -33,7 +33,6 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
@@ -42,7 +41,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -60,7 +59,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
|
||||
|
||||
@@ -98,7 +97,6 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
@@ -107,7 +105,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -120,7 +118,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
|
||||
const b_type sindx = xsimd::sub(dx, t3);
|
||||
@@ -160,7 +158,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
@@ -170,7 +167,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -183,7 +179,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
idx = xsimd::bitwise_and(idx, mask);
|
||||
b_type sinv = b_type::gather(lookup_table_.sin_values.data(), idx);
|
||||
|
||||
Reference in New Issue
Block a user