5 Commits

Author SHA1 Message Date
Bram Veenboer
83d60fdda0 Add build subdirectory 2025-08-21 15:06:10 +02:00
Bram Veenboer
660a800ece Use v4 2025-08-21 14:58:57 +02:00
Bram Veenboer
24f3ccfca8 Switch to upload/download-artifacts that retain permissions 2025-08-21 14:54:46 +02:00
Bram Veenboer
2381981197 DEBUG 2025-08-21 09:32:25 +02:00
Bram Veenboer
0774fd9123 Add build with Intel compiler 2025-08-21 09:18:29 +02:00
13 changed files with 76 additions and 216 deletions

View File

@@ -7,5 +7,4 @@ repos:
rev: v0.6.13 rev: v0.6.13
hooks: hooks:
- id: cmake-format - id: cmake-format
- id: cmake-lint - id: cmake-lint
args: [--disabled-codes=C0301]

View File

@@ -12,11 +12,6 @@ option(TRIGDX_BUILD_TESTS "Build tests" ON)
option(TRIGDX_BUILD_BENCHMARKS "Build tests" ON) option(TRIGDX_BUILD_BENCHMARKS "Build tests" ON)
option(TRIGDX_BUILD_PYTHON "Build Python interface" ON) option(TRIGDX_BUILD_PYTHON "Build Python interface" ON)
# Add compiler flags
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -Wall -Wnon-virtual-dtor -Wduplicated-branches -Wvla -Wpointer-arith -Wextra -Wno-unused-parameter"
)
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake") list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
configure_file( configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/trigdx_config.hpp.in ${CMAKE_CURRENT_SOURCE_DIR}/cmake/trigdx_config.hpp.in

View File

@@ -1,54 +0,0 @@
# TrigDx
Highperformance C++ library offering multiple implementations of transcendental trigonometric functions (e.g., sin, cos, tan and their variants), designed for numerical, signalprocessing, and realtime systems where trading a small loss of accuracy for significantly higher throughput on modern CPUs (scalar and SIMD) and NVIDIA GPUs is acceptable.
## Why TrigDx?
Many applications use the standard library implementations, which prioritise correctness but are not always optimal for throughput on vectorized or GPU hardware. TrigDx gives you multiple implementations so you can:
- Replace `std::sin` / `std::cos` calls with faster approximations when a small, bounded reduction in accuracy is acceptable.
- Use SIMD/vectorized implementations and compact lookup tables for high throughput lookups.
- Run massively parallel kernels that take advantage of a GPU's _Special Function Units_ (SFUs).
## Requirements
- A C++ compiler with at least C++17 support (GCC, Clang)
- CMake 3.15+
- Optional: NVIDIA CUDA Toolkit 11+ to build GPU kernels
- Optional: GoogleTest (for unit tests) and GoogleBenchmark (for microbenchmarks)
## Building
```bash
git clone https://github.com/astron-rd/TrigDx.git
cd TrigDx
mkdir build && cd build
# CPU-only:
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_XSIMD=ON ..
cmake --build . -j
# Enable CUDA (if available):
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_GPU=ON ..
cmake --build . -j
# Run tests:
ctest --output-on-failure -j
```
Common CMake options:
- `TRIGDX_USE_GPU=ON/OFF` — build GPU support.
- `TRIGDX_BUILD_TESTS=ON/OFF` — build tests.
- `TRIGDX_BUILD_BENCHMARKS=ON/OFF` — build benchmarks.
- `TRIGDX_BUILD_PYTHON` — build Python interface.
## Contributing
- Fork → create a feature branch → open a PR.
- Include unit tests for correctnesssensitive changes and benchmark results for performance changes.
- Follow project style (clangformat) and run tests locally before submitting.
## Reporting issues
When opening an issue for incorrect results or performance regressions, please include:
- Platform and CPU/GPU model.
- Compiler and version with exact compile flags.
- Small reproducer (input data and the TrigDx implementation used).
## License
See the LICENSE file in the repository for licensing details.

View File

@@ -2,14 +2,13 @@
#include <chrono> #include <chrono>
#include <cmath> #include <cmath>
#include <stdexcept>
#include <string> #include <string>
#include <vector> #include <vector>
#include <benchmark/benchmark.h> #include <benchmark/benchmark.h>
void init_x(float *x, size_t n) { void init_x(std::vector<float> &x) {
for (size_t i = 0; i < n; ++i) { for (size_t i = 0; i < x.size(); ++i) {
x[i] = (i % 360) * 0.0174533f; // degrees to radians x[i] = (i % 360) * 0.0174533f; // degrees to radians
} }
} }
@@ -17,31 +16,24 @@ void init_x(float *x, size_t n) {
template <typename Backend> template <typename Backend>
static void benchmark_sinf(benchmark::State &state) { static void benchmark_sinf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), s(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *s =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_sinf(N, x, s); backend.compute_sinf(N, x.data(), s.data());
benchmark::DoNotOptimize(s); benchmark::DoNotOptimize(s);
} }
backend.free_memory(x);
backend.free_memory(s);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }
@@ -49,35 +41,24 @@ static void benchmark_sinf(benchmark::State &state) {
template <typename Backend> template <typename Backend>
static void benchmark_cosf(benchmark::State &state) { static void benchmark_cosf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), c(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *c =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
if (!x || !c) {
throw std::runtime_error("Buffer allocation failed");
}
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_cosf(N, x, c); backend.compute_cosf(N, x.data(), c.data());
benchmark::DoNotOptimize(c); benchmark::DoNotOptimize(c);
} }
backend.free_memory(x);
backend.free_memory(c);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }
@@ -85,38 +66,25 @@ static void benchmark_cosf(benchmark::State &state) {
template <typename Backend> template <typename Backend>
static void benchmark_sincosf(benchmark::State &state) { static void benchmark_sincosf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), s(N), c(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *s =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *c =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
if (!x || !s || !c) {
throw std::runtime_error("Buffer allocation failed");
}
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_sincosf(N, x, s, c); backend.compute_sincosf(N, x.data(), s.data(), c.data());
benchmark::DoNotOptimize(s); benchmark::DoNotOptimize(s);
benchmark::DoNotOptimize(c); benchmark::DoNotOptimize(c);
} }
backend.free_memory(x);
backend.free_memory(s);
backend.free_memory(c);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }

View File

@@ -11,8 +11,7 @@ public:
GPUBackend(); GPUBackend();
~GPUBackend() override; ~GPUBackend() override;
void *allocate_memory(size_t bytes) const override; void init(size_t n = 0) override;
void free_memory(void *ptr) const override;
void compute_sinf(size_t n, const float *x, float *s) const override; void compute_sinf(size_t n, const float *x, float *s) const override;
void compute_cosf(size_t n, const float *x, float *c) const override; void compute_cosf(size_t n, const float *x, float *c) const override;
void compute_sincosf(size_t n, const float *x, float *s, void compute_sincosf(size_t n, const float *x, float *s,

View File

@@ -1,8 +1,6 @@
#pragma once #pragma once
#include <cstddef> #include <cstddef>
#include <cstdint>
#include <cstdlib>
// Base interface for all math backends // Base interface for all math backends
class Backend { class Backend {
@@ -12,12 +10,6 @@ public:
// Optional initialization // Optional initialization
virtual void init(size_t n = 0) {} virtual void init(size_t n = 0) {}
virtual void *allocate_memory(size_t bytes) const {
return static_cast<void *>(new uint8_t[bytes]);
};
virtual void free_memory(void *ptr) const { std::free(ptr); };
// Compute sine for n elements // Compute sine for n elements
virtual void compute_sinf(size_t n, const float *x, float *s) const = 0; virtual void compute_sinf(size_t n, const float *x, float *s) const = 0;

View File

@@ -1,6 +1,4 @@
find_package(pybind11 CONFIG QUIET) if(NOT TARGET pybind11)
if(NOT pybind11_FOUND)
FetchContent_Declare( FetchContent_Declare(
pybind11 pybind11
GIT_REPOSITORY https://github.com/pybind/pybind11.git GIT_REPOSITORY https://github.com/pybind/pybind11.git
@@ -8,16 +6,5 @@ if(NOT pybind11_FOUND)
FetchContent_MakeAvailable(pybind11) FetchContent_MakeAvailable(pybind11)
endif() endif()
# Needed to set ${Python_VERSION_MAJOR} and ${Python_VERSION_MINOR}
find_package(Python REQUIRED)
pybind11_add_module(pytrigdx bindings.cpp) pybind11_add_module(pytrigdx bindings.cpp)
target_link_libraries(pytrigdx PRIVATE trigdx) target_link_libraries(pytrigdx PRIVATE trigdx)
set_target_properties(pytrigdx PROPERTIES OUTPUT_NAME "trigdx")
set(PYTHON_SITE_PACKAGES
"${CMAKE_INSTALL_LIBDIR}/python${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}/site-packages/trigdx"
)
install(TARGETS pytrigdx DESTINATION ${PYTHON_SITE_PACKAGES})
install(FILES __init__.py DESTINATION ${PYTHON_SITE_PACKAGES})

View File

@@ -1,16 +0,0 @@
from .trigdx import Reference, Lookup16K, Lookup32K, LookupAVX16K, LookupAVX32K
try:
from .trigdx import MKL
except ImportError:
pass
try:
from .trigdx import GPU
except ImportError:
pass
try:
from .trigdx import LookupXSIMD16K, LookupXSIMD32K
except ImportError:
pass

View File

@@ -72,9 +72,7 @@ void bind_backend(py::module &m, const char *name) {
.def("compute_sincosf", &compute_sincos<float>); .def("compute_sincosf", &compute_sincos<float>);
} }
PYBIND11_MODULE(trigdx, m) { PYBIND11_MODULE(pytrigdx, m) {
m.doc() = "TrigDx python bindings";
py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend") py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend")
.def("init", &Backend::init); .def("init", &Backend::init);
@@ -93,4 +91,4 @@ PYBIND11_MODULE(trigdx, m) {
bind_backend<LookupXSIMDBackend<16384>>(m, "LookupXSIMD16K"); bind_backend<LookupXSIMDBackend<16384>>(m, "LookupXSIMD16K");
bind_backend<LookupXSIMDBackend<32768>>(m, "LookupXSIMD32K"); bind_backend<LookupXSIMDBackend<32768>>(m, "LookupXSIMD32K");
#endif #endif
} }

View File

@@ -2,24 +2,6 @@ include(FetchContent)
include(FindAVX) include(FindAVX)
add_library(trigdx reference.cpp lookup.cpp) add_library(trigdx reference.cpp lookup.cpp)
if(HAVE_AVX2)
target_compile_definitions(trigdx PUBLIC HAVE_AVX2)
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
"IntelLLVM")
target_compile_options(trigdx PUBLIC -xCORE-AVX2)
else()
target_compile_options(trigdx PUBLIC -mavx2)
endif()
elseif(HAVE_AVX)
target_compile_definitions(trigdx PUBLIC HAVE_AVX)
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
"IntelLLVM")
target_compile_options(trigdx PUBLIC -xAVX)
else()
target_compile_options(trigdx PUBLIC -mavx)
endif()
endif()
target_include_directories(trigdx PUBLIC ${PROJECT_SOURCE_DIR}/include) target_include_directories(trigdx PUBLIC ${PROJECT_SOURCE_DIR}/include)
if(HAVE_AVX) if(HAVE_AVX)

View File

@@ -10,63 +10,79 @@
struct GPUBackend::Impl { struct GPUBackend::Impl {
void *allocate_memory(size_t bytes) const { ~Impl() {
void *ptr; if (h_x) {
cudaMallocHost(&ptr, bytes); cudaFreeHost(h_x);
return ptr; }
if (h_s) {
cudaFreeHost(h_s);
}
if (h_c) {
cudaFreeHost(h_c);
}
if (d_x) {
cudaFree(d_x);
}
if (d_s) {
cudaFree(d_s);
}
if (d_c) {
cudaFree(d_c);
}
} }
void free_memory(void *ptr) const { cudaFreeHost(ptr); } void init(size_t n) {
const size_t bytes = n * sizeof(float);
cudaMallocHost(&h_x, bytes);
cudaMallocHost(&h_s, bytes);
cudaMallocHost(&h_c, bytes);
cudaMalloc(&d_x, bytes);
cudaMalloc(&d_s, bytes);
cudaMalloc(&d_c, bytes);
}
void compute_sinf(size_t n, const float *x, float *s) const { void compute_sinf(size_t n, const float *x, float *s) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_s; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_s, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_sinf_kernel(d_x, d_s, n); launch_sinf_kernel(d_x, d_s, n);
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(s, h_s, bytes);
cudaFree(d_s);
} }
void compute_cosf(size_t n, const float *x, float *c) const { void compute_cosf(size_t n, const float *x, float *c) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_c; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_c, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_cosf_kernel(d_x, d_c, n); launch_cosf_kernel(d_x, d_c, n);
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(c, h_c, bytes);
cudaFree(d_c);
} }
void compute_sincosf(size_t n, const float *x, float *s, float *c) const { void compute_sincosf(size_t n, const float *x, float *s, float *c) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_s, *d_c; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_s, bytes);
cudaMalloc(&d_c, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_sincosf_kernel(d_x, d_s, d_c, n); launch_sincosf_kernel(d_x, d_s, d_c, n);
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(s, h_s, bytes);
cudaFree(d_s); std::memcpy(c, h_c, bytes);
cudaFree(d_c);
} }
float *h_x = nullptr;
float *h_s = nullptr;
float *h_c = nullptr;
float *d_x = nullptr;
float *d_s = nullptr;
float *d_c = nullptr;
}; };
GPUBackend::GPUBackend() : impl(std::make_unique<Impl>()) {} GPUBackend::GPUBackend() : impl(std::make_unique<Impl>()) {}
GPUBackend::~GPUBackend() = default; GPUBackend::~GPUBackend() = default;
void *GPUBackend::allocate_memory(size_t bytes) const { void GPUBackend::init(size_t n) { impl->init(n); }
return impl->allocate_memory(bytes);
}
void GPUBackend::free_memory(void *ptr) const { impl->free_memory(ptr); }
void GPUBackend::compute_sinf(size_t n, const float *x, float *s) const { void GPUBackend::compute_sinf(size_t n, const float *x, float *s) const {
impl->compute_sinf(n, x, s); impl->compute_sinf(n, x, s);

View File

@@ -6,16 +6,6 @@
#include "trigdx/lookup_avx.hpp" #include "trigdx/lookup_avx.hpp"
#if defined(HAVE_AVX) && !defined(__AVX__)
static_assert(HAVE_AVX == 0, "__AVX__ should be defined when HAVE_AVX is "
"defined");
#endif
#if defined(HAVE_AVX2) && !defined(__AVX2__)
static_assert(HAVE_AVX2 == 0, "__AVX2__ should be defined when HAVE_AVX2 is "
"defined");
#endif
template <std::size_t NR_SAMPLES> struct LookupAVXBackend<NR_SAMPLES>::Impl { template <std::size_t NR_SAMPLES> struct LookupAVXBackend<NR_SAMPLES>::Impl {
std::vector<float> lookup; std::vector<float> lookup;
static constexpr std::size_t MASK = NR_SAMPLES - 1; static constexpr std::size_t MASK = NR_SAMPLES - 1;

View File

@@ -20,8 +20,8 @@ template <std::size_t NR_SAMPLES> struct lookup_table {
cos_values[i] = cosf(i * PI_FRAC); cos_values[i] = cosf(i * PI_FRAC);
} }
} }
std::array<float, NR_SAMPLES> sin_values;
std::array<float, NR_SAMPLES> cos_values; std::array<float, NR_SAMPLES> cos_values;
std::array<float, NR_SAMPLES> sin_values;
}; };
template <std::size_t NR_SAMPLES> struct cosf_dispatcher { template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
@@ -33,6 +33,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
constexpr uint_fast32_t VL = b_type::size; constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL; const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE); const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC); const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
const m_type mask = m_type::broadcast(lookup_table_.MASK); const m_type mask = m_type::broadcast(lookup_table_.MASK);
@@ -41,7 +42,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2! const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3! const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4! const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i; uint_fast32_t i;
for (i = 0; i < VS; i += VL) { for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag()); const b_type vx = b_type::load(a + i, Tag());
@@ -59,7 +60,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx); const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2); const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3); const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term4); const b_type t4 = xsimd::mul(dx4, term3);
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4); const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
@@ -97,6 +98,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
constexpr uint_fast32_t VL = b_type::size; constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL; const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE); const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC); const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
const m_type mask = m_type::broadcast(lookup_table_.MASK); const m_type mask = m_type::broadcast(lookup_table_.MASK);
@@ -105,7 +107,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2! const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3! const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4! const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i; uint_fast32_t i;
for (i = 0; i < VS; i += VL) { for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag()); const b_type vx = b_type::load(a + i, Tag());
@@ -118,7 +120,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx); const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2); const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3); const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term4); const b_type t4 = xsimd::mul(dx4, term3);
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4); const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
const b_type sindx = xsimd::sub(dx, t3); const b_type sindx = xsimd::sub(dx, t3);
@@ -158,6 +160,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
constexpr uint_fast32_t VL = b_type::size; constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL; const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE); const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const m_type mask = m_type::broadcast(lookup_table_.MASK); const m_type mask = m_type::broadcast(lookup_table_.MASK);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC); const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
@@ -167,6 +170,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3! const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4! const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i; uint_fast32_t i;
for (i = 0; i < VS; i += VL) { for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag()); const b_type vx = b_type::load(a + i, Tag());
@@ -179,7 +183,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx); const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2); const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3); const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term4); const b_type t4 = xsimd::mul(dx4, term3);
idx = xsimd::bitwise_and(idx, mask); idx = xsimd::bitwise_and(idx, mask);
b_type sinv = b_type::gather(lookup_table_.sin_values.data(), idx); b_type sinv = b_type::gather(lookup_table_.sin_values.data(), idx);