implement schema check and use automation instead of sensor

This commit is contained in:
2025-07-26 17:53:12 +02:00
parent ac8759258d
commit 8d06b236b7
5 changed files with 59 additions and 64 deletions

View File

@@ -3,9 +3,10 @@ from glob import glob
import polars as pl
import structlog
from models import Deal
from plato.fetch import scrape_plato
from plato.parse import parse as parse_plato
from shared.utils import get_partition_keys, parse_partition_keys
from shared.utils import get_partition_keys, load_partitions
from sounds.fetch import fetch_deals
from sounds.parse import parse as parse_sounds
@@ -37,12 +38,12 @@ partitions_mapping = dg.MultiToSingleDimensionPartitionMapping(
},
config_schema={"import_dir": dg.Field(str, default_value="/storage/import")},
)
def deals(context):
def deals(context: dg.AssetExecutionContext) -> pl.DataFrame:
ic()
ic(context.partition_key)
ic(context.op_config)
import_dir = context.op_config["import_dir"]
partition_key = context.partition_key.keys_by_dimension
partition_key = get_partition_keys(context)
date_str = partition_key["date"]
source = partition_key["source"]
logger.info("Materializing deals", date=date_str, source=source)
@@ -88,22 +89,6 @@ def deals(context):
)
@dg.asset(
io_manager_key="polars_parquet_io_manager",
partitions_def=daily_partitions_def,
ins={"partitions": dg.AssetIn(key=deals.key, partition_mapping=partitions_mapping)},
automation_condition=dg.AutomationCondition.eager(),
)
def new_deals(
context: dg.OpExecutionContext, partitions: dict[str, pl.DataFrame]
) -> None: # pl.DataFrame:
"""Combine deals from Plato and Sounds into a single DataFrame."""
ic()
partition_keys = parse_partition_keys(context)
ic(partition_keys)
return
@dg.asset(
io_manager_key="polars_parquet_io_manager",
partitions_def=deals.partitions_def,
@@ -113,8 +98,9 @@ def new_deals(
),
)
def cleaned_deals(
context: dg.OpExecutionContext, df: pl.LazyFrame
) -> pl.DataFrame | None:
context: dg.AssetExecutionContext, df: pl.LazyFrame
) -> Deal.DataFrame | None:
"""Clean and parse deals from the raw source tables."""
ic()
partition_keys = get_partition_keys(context)
ic(partition_keys)
@@ -129,22 +115,32 @@ def cleaned_deals(
context.log.warning(f"Unknown source: {source}!")
return None
ic(parsed_df.collect_schema())
# Deduplicate and sort the DataFrame
columns = ["source", "id", "artist", "title", "price"]
return (
parsed_df.collect()
.sort("date", descending=True)
return Deal.DataFrame(
parsed_df.sort("date", descending=True)
.unique(subset=columns, keep="first")
.sort("date", descending=False)
.select(*columns, "date", "release", "url")
.collect()
)
@dg.asset(
ins={"df": dg.AssetIn(key=new_deals.key)},
deps=[cleaned_deals],
io_manager_key="polars_parquet_io_manager",
automation_condition=dg.AutomationCondition.eager(),
automation_condition=dg.AutomationCondition.on_missing().without(
dg.AutomationCondition.in_latest_time_window()
),
)
def works(df: pl.DataFrame) -> pl.DataFrame:
columns = ["artist", "title", "release"]
return df[columns].unique()
def works(context: dg.AssetExecutionContext) -> pl.DataFrame | None:
"""Aggregate works from cleaned deals."""
partitions = context.instance.get_materialized_partitions(cleaned_deals.key)
ic(partitions)
dfs = list(load_partitions(context, cleaned_deals.key, partitions))
if dfs:
columns = ["artist", "title", "release"]
return pl.concat(dfs, how="vertical_relaxed").select(columns).unique()
return None