git-svn-id: svn://svn.code.sf.net/p/wiigee/code/trunk@91 c7eff9ee-dd40-0410-8832-91a4d88773cf
315 lines
8.4 KiB
Java
Executable File
315 lines
8.4 KiB
Java
Executable File
/*
|
|
* wiigee - accelerometerbased gesture recognition
|
|
* Copyright (C) 2007, 2008 Benjamin Poppinga
|
|
*
|
|
* Developed at University of Oldenburg
|
|
* Contact: benjamin.poppinga@informatik.uni-oldenburg.de
|
|
*
|
|
* This file is part of wiigee.
|
|
*
|
|
* wiigee is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
package org.wiigee.logic;
|
|
import java.text.DecimalFormat;
|
|
import java.util.Vector;
|
|
import org.wiigee.util.Log;
|
|
|
|
/**
|
|
* This is a Hidden Markov Model implementation which internally provides
|
|
* the basic algorithms for training and recognition (forward and backward
|
|
* algorithm). Since a regular Hidden Markov Model doesn't provide a possibility
|
|
* to train multiple sequences, this implementation has been optimized for this
|
|
* purposes using some state-of-the-art technologies described in several papers.
|
|
*
|
|
* @author Benjamin 'BePo' Poppinga
|
|
*
|
|
*/
|
|
|
|
public class HMM {
|
|
/** The number of states */
|
|
protected int numStates;
|
|
|
|
/** The number of observations */
|
|
protected int numObservations;
|
|
|
|
/** The initial probabilities for each state: p[state] */
|
|
protected double pi[];
|
|
|
|
/** The state change probability to switch from state A to
|
|
* state B: a[stateA][stateB] */
|
|
protected double a[][];
|
|
|
|
/** The probability to emit symbol S in state A: b[stateA][symbolS] */
|
|
protected double b[][];
|
|
|
|
/**
|
|
* Initialize the Hidden Markov Model in a left-to-right version.
|
|
*
|
|
* @param numStates Number of states
|
|
* @param numObservations Number of observations
|
|
*/
|
|
public HMM(int numStates, int numObservations) {
|
|
this.numStates = numStates;
|
|
this.numObservations = numObservations;
|
|
pi = new double[numStates];
|
|
a = new double[numStates][numStates];
|
|
b = new double[numStates][numObservations];
|
|
this.reset();
|
|
}
|
|
|
|
/**
|
|
* Reset the Hidden Markov Model to the initial left-to-right values.
|
|
*
|
|
*/
|
|
private void reset() {
|
|
int jumplimit = 2;
|
|
|
|
// set startup probability
|
|
pi[0] = 1;
|
|
for(int i=1; i<numStates; i++) {
|
|
pi[i] = 0;
|
|
}
|
|
|
|
// set state change probabilities in the left-to-right version
|
|
// NOTE: i now that this is dirty and very static. :)
|
|
for(int i=0; i<numStates; i++) {
|
|
for(int j=0; j<numStates; j++) {
|
|
if(i==numStates-1 && j==numStates-1) { // last row
|
|
a[i][j] = 1.0;
|
|
} else if(i==numStates-2 && j==numStates-2) { // next to last row
|
|
a[i][j] = 0.5;
|
|
} else if(i==numStates-2 && j==numStates-1) { // next to last row
|
|
a[i][j] = 0.5;
|
|
} else if(i<=j && i>j-jumplimit-1) {
|
|
a[i][j] = 1.0/(jumplimit+1);
|
|
} else {
|
|
a[i][j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// emission probability
|
|
for(int i=0; i<numStates; i++) {
|
|
for(int j=0; j<numObservations; j++) {
|
|
b[i][j] = 1.0/(double)numObservations;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Trains the Hidden Markov Model with multiple sequences.
|
|
* This method is normally not known to basic hidden markov
|
|
* models, because they usually use the Baum-Welch-Algorithm.
|
|
* This method is NOT the traditional Baum-Welch-Algorithm.
|
|
*
|
|
* If you want to know in detail how it works please consider
|
|
* my Individuelles Projekt paper on the wiigee Homepage. Also
|
|
* there exist some english literature on the world wide web.
|
|
* Try to search for some papers by Rabiner or have a look at
|
|
* Vesa-Matti Mäntylä - "Discrete Hidden Markov Models with
|
|
* application to isolated user-dependent hand gesture recognition".
|
|
*
|
|
*/
|
|
public void train(Vector<int[]> trainsequence) {
|
|
|
|
double[][] a_new = new double[a.length][a.length];
|
|
double[][] b_new = new double[b.length][b[0].length];
|
|
// re calculate state change probability a
|
|
for(int i=0; i<a.length; i++) {
|
|
for(int j=0; j<a[i].length; j++) {
|
|
double zaehler=0;
|
|
double nenner=0;
|
|
|
|
for(int k=0; k<trainsequence.size(); k++) {
|
|
int[] sequence = trainsequence.elementAt(k);
|
|
|
|
double[][] fwd = this.forwardProc(sequence);
|
|
double[][] bwd = this.backwardProc(sequence);
|
|
double prob = this.getProbability(sequence);
|
|
|
|
double zaehler_innersum=0;
|
|
double nenner_innersum=0;
|
|
|
|
|
|
for(int t=0; t<sequence.length-1; t++) {
|
|
zaehler_innersum+=fwd[i][t]*a[i][j]*b[j][sequence[t+1]]*bwd[j][t+1];
|
|
nenner_innersum+=fwd[i][t]*bwd[i][t];
|
|
}
|
|
zaehler+=(1/prob)*zaehler_innersum;
|
|
nenner+=(1/prob)*nenner_innersum;
|
|
} // k
|
|
|
|
a_new[i][j] = zaehler/nenner;
|
|
} // j
|
|
} // i
|
|
|
|
// re calculate emission probability b
|
|
for(int i=0; i<b.length; i++) { // zustaende
|
|
for(int j=0; j<b[i].length; j++) { // symbole
|
|
double zaehler=0;
|
|
double nenner=0;
|
|
|
|
for(int k=0; k<trainsequence.size(); k++) {
|
|
int[] sequence = trainsequence.elementAt(k);
|
|
|
|
double[][] fwd = this.forwardProc(sequence);
|
|
double[][] bwd = this.backwardProc(sequence);
|
|
double prob = this.getProbability(sequence);
|
|
|
|
double zaehler_innersum=0;
|
|
double nenner_innersum=0;
|
|
|
|
|
|
for(int t=0; t<sequence.length-1; t++) {
|
|
if(sequence[t]==j) {
|
|
zaehler_innersum+=fwd[i][t]*bwd[i][t];
|
|
}
|
|
nenner_innersum+=fwd[i][t]*bwd[i][t];
|
|
}
|
|
zaehler+=(1/prob)*zaehler_innersum;
|
|
nenner+=(1/prob)*nenner_innersum;
|
|
} // k
|
|
|
|
b_new[i][j] = zaehler/nenner;
|
|
} // j
|
|
} // i
|
|
|
|
this.a=a_new;
|
|
this.b=b_new;
|
|
}
|
|
|
|
/**
|
|
* Traditional Forward Algorithm.
|
|
*
|
|
* @param o the observationsequence O
|
|
* @return Array[State][Time]
|
|
*
|
|
*/
|
|
protected double[][] forwardProc(int[] o) {
|
|
double[][] f = new double[numStates][o.length];
|
|
for (int l = 0; l < f.length; l++) {
|
|
f[l][0] = pi[l] * b[l][o[0]];
|
|
}
|
|
for (int i = 1; i < o.length; i++) {
|
|
for (int k = 0; k < f.length; k++) {
|
|
double sum = 0;
|
|
for (int l = 0; l < numStates; l++) {
|
|
sum += f[l][i-1] * a[l][k];
|
|
}
|
|
f[k][i] = sum * b[k][o[i]];
|
|
}
|
|
}
|
|
return f;
|
|
}
|
|
|
|
/**
|
|
* Returns the probability that a observation sequence O belongs
|
|
* to this Hidden Markov Model without using the bayes classifier.
|
|
* Internally the well known forward algorithm is used.
|
|
*
|
|
* @param o observation sequence
|
|
* @return probability that sequence o belongs to this hmm
|
|
*/
|
|
public double getProbability(int[] o) {
|
|
double prob = 0.0;
|
|
double[][] forward = this.forwardProc(o);
|
|
// add probabilities
|
|
for (int i = 0; i < forward.length; i++) { // for every state
|
|
prob += forward[i][forward[i].length - 1];
|
|
}
|
|
return prob;
|
|
}
|
|
|
|
|
|
/**
|
|
* Backward algorithm.
|
|
*
|
|
* @param o observation sequence o
|
|
* @return Array[State][Time]
|
|
*/
|
|
protected double[][] backwardProc(int[] o) {
|
|
int T = o.length;
|
|
double[][] bwd = new double[numStates][T];
|
|
/* Basisfall */
|
|
for (int i = 0; i < numStates; i++)
|
|
bwd[i][T - 1] = 1;
|
|
/* Induktion */
|
|
for (int t = T - 2; t >= 0; t--) {
|
|
for (int i = 0; i < numStates; i++) {
|
|
bwd[i][t] = 0;
|
|
for (int j = 0; j < numStates; j++)
|
|
bwd[i][t] += (bwd[j][t + 1] * a[i][j] * b[j][o[t + 1]]);
|
|
}
|
|
}
|
|
return bwd;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Prints everything about this model, including
|
|
* all values. For debug purposes or if you want
|
|
* to comprehend what happend to the model.
|
|
*
|
|
*/
|
|
public void print() {
|
|
DecimalFormat fmt = new DecimalFormat();
|
|
fmt.setMinimumFractionDigits(5);
|
|
fmt.setMaximumFractionDigits(5);
|
|
for (int i = 0; i < numStates; i++)
|
|
Log.write("pi(" + i + ") = " + fmt.format(pi[i]));
|
|
Log.write("");
|
|
for (int i = 0; i < numStates; i++) {
|
|
for (int j = 0; j < numStates; j++)
|
|
Log.write("a(" + i + "," + j + ") = "
|
|
+ fmt.format(a[i][j]) + " ");
|
|
Log.write("");
|
|
}
|
|
Log.write("");
|
|
for (int i = 0; i < numStates; i++) {
|
|
for (int k = 0; k < numObservations; k++)
|
|
Log.write("b(" + i + "," + k + ") = "
|
|
+ fmt.format(b[i][k]) + " ");
|
|
Log.write("");
|
|
}
|
|
}
|
|
|
|
public double[] getPi() {
|
|
return this.pi;
|
|
}
|
|
|
|
public void setPi(double[] pi) {
|
|
this.pi = pi;
|
|
}
|
|
|
|
public double[][] getA() {
|
|
return this.a;
|
|
}
|
|
|
|
public void setA(double[][] a) {
|
|
this.a = a;
|
|
}
|
|
|
|
public double[][] getB() {
|
|
return this.b;
|
|
}
|
|
|
|
public void setB(double[][] b) {
|
|
this.b=b;
|
|
}
|
|
}
|