Files
jlibwiigee/src/org/wiigee/logic/HMM.java
bepo23 d836f00c91 Changing things all the day. Badly more to come to prepare the lib for a demonstration in a magazine. :)
git-svn-id: svn://svn.code.sf.net/p/wiigee/code/trunk@91 c7eff9ee-dd40-0410-8832-91a4d88773cf
2009-06-09 13:06:09 +00:00

315 lines
8.4 KiB
Java
Executable File

/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: benjamin.poppinga@informatik.uni-oldenburg.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.text.DecimalFormat;
import java.util.Vector;
import org.wiigee.util.Log;
/**
* This is a Hidden Markov Model implementation which internally provides
* the basic algorithms for training and recognition (forward and backward
* algorithm). Since a regular Hidden Markov Model doesn't provide a possibility
* to train multiple sequences, this implementation has been optimized for this
* purposes using some state-of-the-art technologies described in several papers.
*
* @author Benjamin 'BePo' Poppinga
*
*/
public class HMM {
/** The number of states */
protected int numStates;
/** The number of observations */
protected int numObservations;
/** The initial probabilities for each state: p[state] */
protected double pi[];
/** The state change probability to switch from state A to
* state B: a[stateA][stateB] */
protected double a[][];
/** The probability to emit symbol S in state A: b[stateA][symbolS] */
protected double b[][];
/**
* Initialize the Hidden Markov Model in a left-to-right version.
*
* @param numStates Number of states
* @param numObservations Number of observations
*/
public HMM(int numStates, int numObservations) {
this.numStates = numStates;
this.numObservations = numObservations;
pi = new double[numStates];
a = new double[numStates][numStates];
b = new double[numStates][numObservations];
this.reset();
}
/**
* Reset the Hidden Markov Model to the initial left-to-right values.
*
*/
private void reset() {
int jumplimit = 2;
// set startup probability
pi[0] = 1;
for(int i=1; i<numStates; i++) {
pi[i] = 0;
}
// set state change probabilities in the left-to-right version
// NOTE: i now that this is dirty and very static. :)
for(int i=0; i<numStates; i++) {
for(int j=0; j<numStates; j++) {
if(i==numStates-1 && j==numStates-1) { // last row
a[i][j] = 1.0;
} else if(i==numStates-2 && j==numStates-2) { // next to last row
a[i][j] = 0.5;
} else if(i==numStates-2 && j==numStates-1) { // next to last row
a[i][j] = 0.5;
} else if(i<=j && i>j-jumplimit-1) {
a[i][j] = 1.0/(jumplimit+1);
} else {
a[i][j] = 0.0;
}
}
}
// emission probability
for(int i=0; i<numStates; i++) {
for(int j=0; j<numObservations; j++) {
b[i][j] = 1.0/(double)numObservations;
}
}
}
/**
* Trains the Hidden Markov Model with multiple sequences.
* This method is normally not known to basic hidden markov
* models, because they usually use the Baum-Welch-Algorithm.
* This method is NOT the traditional Baum-Welch-Algorithm.
*
* If you want to know in detail how it works please consider
* my Individuelles Projekt paper on the wiigee Homepage. Also
* there exist some english literature on the world wide web.
* Try to search for some papers by Rabiner or have a look at
* Vesa-Matti Mäntylä - "Discrete Hidden Markov Models with
* application to isolated user-dependent hand gesture recognition".
*
*/
public void train(Vector<int[]> trainsequence) {
double[][] a_new = new double[a.length][a.length];
double[][] b_new = new double[b.length][b[0].length];
// re calculate state change probability a
for(int i=0; i<a.length; i++) {
for(int j=0; j<a[i].length; j++) {
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
int[] sequence = trainsequence.elementAt(k);
double[][] fwd = this.forwardProc(sequence);
double[][] bwd = this.backwardProc(sequence);
double prob = this.getProbability(sequence);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
zaehler_innersum+=fwd[i][t]*a[i][j]*b[j][sequence[t+1]]*bwd[j][t+1];
nenner_innersum+=fwd[i][t]*bwd[i][t];
}
zaehler+=(1/prob)*zaehler_innersum;
nenner+=(1/prob)*nenner_innersum;
} // k
a_new[i][j] = zaehler/nenner;
} // j
} // i
// re calculate emission probability b
for(int i=0; i<b.length; i++) { // zustaende
for(int j=0; j<b[i].length; j++) { // symbole
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
int[] sequence = trainsequence.elementAt(k);
double[][] fwd = this.forwardProc(sequence);
double[][] bwd = this.backwardProc(sequence);
double prob = this.getProbability(sequence);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
if(sequence[t]==j) {
zaehler_innersum+=fwd[i][t]*bwd[i][t];
}
nenner_innersum+=fwd[i][t]*bwd[i][t];
}
zaehler+=(1/prob)*zaehler_innersum;
nenner+=(1/prob)*nenner_innersum;
} // k
b_new[i][j] = zaehler/nenner;
} // j
} // i
this.a=a_new;
this.b=b_new;
}
/**
* Traditional Forward Algorithm.
*
* @param o the observationsequence O
* @return Array[State][Time]
*
*/
protected double[][] forwardProc(int[] o) {
double[][] f = new double[numStates][o.length];
for (int l = 0; l < f.length; l++) {
f[l][0] = pi[l] * b[l][o[0]];
}
for (int i = 1; i < o.length; i++) {
for (int k = 0; k < f.length; k++) {
double sum = 0;
for (int l = 0; l < numStates; l++) {
sum += f[l][i-1] * a[l][k];
}
f[k][i] = sum * b[k][o[i]];
}
}
return f;
}
/**
* Returns the probability that a observation sequence O belongs
* to this Hidden Markov Model without using the bayes classifier.
* Internally the well known forward algorithm is used.
*
* @param o observation sequence
* @return probability that sequence o belongs to this hmm
*/
public double getProbability(int[] o) {
double prob = 0.0;
double[][] forward = this.forwardProc(o);
// add probabilities
for (int i = 0; i < forward.length; i++) { // for every state
prob += forward[i][forward[i].length - 1];
}
return prob;
}
/**
* Backward algorithm.
*
* @param o observation sequence o
* @return Array[State][Time]
*/
protected double[][] backwardProc(int[] o) {
int T = o.length;
double[][] bwd = new double[numStates][T];
/* Basisfall */
for (int i = 0; i < numStates; i++)
bwd[i][T - 1] = 1;
/* Induktion */
for (int t = T - 2; t >= 0; t--) {
for (int i = 0; i < numStates; i++) {
bwd[i][t] = 0;
for (int j = 0; j < numStates; j++)
bwd[i][t] += (bwd[j][t + 1] * a[i][j] * b[j][o[t + 1]]);
}
}
return bwd;
}
/**
* Prints everything about this model, including
* all values. For debug purposes or if you want
* to comprehend what happend to the model.
*
*/
public void print() {
DecimalFormat fmt = new DecimalFormat();
fmt.setMinimumFractionDigits(5);
fmt.setMaximumFractionDigits(5);
for (int i = 0; i < numStates; i++)
Log.write("pi(" + i + ") = " + fmt.format(pi[i]));
Log.write("");
for (int i = 0; i < numStates; i++) {
for (int j = 0; j < numStates; j++)
Log.write("a(" + i + "," + j + ") = "
+ fmt.format(a[i][j]) + " ");
Log.write("");
}
Log.write("");
for (int i = 0; i < numStates; i++) {
for (int k = 0; k < numObservations; k++)
Log.write("b(" + i + "," + k + ") = "
+ fmt.format(b[i][k]) + " ");
Log.write("");
}
}
public double[] getPi() {
return this.pi;
}
public void setPi(double[] pi) {
this.pi = pi;
}
public double[][] getA() {
return this.a;
}
public void setA(double[][] a) {
this.a = a;
}
public double[][] getB() {
return this.b;
}
public void setB(double[][] b) {
this.b=b;
}
}