This commit is contained in:
2011-02-04 13:01:42 +00:00
parent d1c20dd63c
commit 6ff0592e4f
40 changed files with 0 additions and 5199 deletions

View File

@@ -1,155 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.util.Vector;
import org.wiigee.event.AccelerationEvent;
/**
* This class represents ONE movement trajectory in a
* concrete instance.
*
* @author Benjamin 'BePo' Poppinga
*/
public class Gesture implements Cloneable {
/** Min/MaxAcceleration setup manually? */
private boolean minmaxmanual;
private double minacc;
private double maxacc;
/** The complete trajectory as WiimoteAccelerationEvents
* as a vector. It's a vector because we don't want to
* loose the chronology of the stored events.
*/
private Vector<AccelerationEvent> data;
/**
* Create an empty Gesture.
*/
public Gesture() {
this.data = new Vector<AccelerationEvent>();
}
/**
* Make a deep copy of another Gesture object.
*
* @param original Another Gesture object
*/
public Gesture(Gesture original) {
this.data = new Vector<AccelerationEvent>();
Vector<AccelerationEvent> origin = original.getData();
for (int i = 0; i < origin.size(); i++) {
this.add((AccelerationEvent) origin.get(i));
}
}
/**
* Adds a new acceleration event to this gesture.
*
* @param event The WiimoteAccelerationEvent to add.
*/
public void add(AccelerationEvent event) {
this.data.add(event);
}
/**
* Returns the last acceleration added to this gesture.
*
* @return the last acceleration event added.
*/
public AccelerationEvent getLastData() {
return (AccelerationEvent) this.data.get(this.data.size() - 1);
}
/**
* Returns the whole chronological sequence of accelerations as
* a vector.
*
* @return chronological sequence of accelerations.
*/
public Vector<AccelerationEvent> getData() {
return this.data;
}
/**
* Removes the first element of the acceleration queue of a gesture
*/
public void removeFirstData() {
this.data.remove(0);
}
public int getCountOfData() {
return this.data.size();
}
public void setMaxAndMinAcceleration(double max, double min) {
this.maxacc = max;
this.minacc = min;
this.minmaxmanual = true;
}
public double getMaxAcceleration() {
if(!this.minmaxmanual) {
double maxacc = Double.MIN_VALUE;
for(int i=0; i<this.data.size(); i++) {
if(Math.abs(this.data.get(i).getX()) > maxacc) {
maxacc=Math.abs(this.data.get(i).getX());
}
if(Math.abs(this.data.get(i).getY()) > maxacc) {
maxacc=Math.abs(this.data.get(i).getY());
}
if(Math.abs(this.data.get(i).getZ()) > maxacc) {
maxacc=Math.abs(this.data.get(i).getZ());
}
}
return maxacc;
} else {
return this.maxacc;
}
}
public double getMinAcceleration() {
if(!this.minmaxmanual) {
double minacc = Double.MAX_VALUE;
for(int i=0; i<this.data.size(); i++) {
if(Math.abs(this.data.get(i).getX()) < minacc) {
minacc=Math.abs(this.data.get(i).getX());
}
if(Math.abs(this.data.get(i).getY()) < minacc) {
minacc=Math.abs(this.data.get(i).getY());
}
if(Math.abs(this.data.get(i).getZ()) < minacc) {
minacc=Math.abs(this.data.get(i).getZ());
}
}
return minacc;
} else {
return this.minacc;
}
}
}

View File

@@ -1,205 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.util.Vector;
import org.wiigee.event.AccelerationEvent;
import org.wiigee.util.Log;
/**
* This Class units a Quantizer-Component and an Model-Component.
* In this implementation a k-mean-algorithm for quantization and
* a hidden markov model as instance for the model has been used.
*
* @author Benjamin 'BePo' Poppinga
*/
public class GestureModel {
/** The number of states the hidden markov model consists of */
private int numStates;
/** The number of observations for the hmm and k-mean */
private int numObservations;
/** The quantization component */
private Quantizer quantizer;
/** The statistical model, hidden markov model */
private HMM markovmodell;
/** The default probability of this gesturemodel,
* needed for the bayes classifier */
private double defaultprobability;
/** Creates a Unit (Quantizer&Model).
*
* @param id
* int representation of a gesture "name"/class.
*/
public GestureModel() {
this.numStates=8; // n=8 states empirical value
this.numObservations=14; // k=14 observations empirical value
this.markovmodell = new HMM(numStates, numObservations); // init model
this.quantizer = new Quantizer(numStates); // init quantizer
}
/**
* Trains the model to a set of motion-sequences, representing
* different evaluations of a gesture
*
* @param trainsequence a vector of gestures
*/
public void train(Vector<Gesture> trainsequence) {
// summarize all vectors from the different gestures in one
// gesture called sum.
double maxacc=0;
double minacc=0;
Gesture sum = new Gesture();
for(int i=0; i<trainsequence.size(); i++) {
Vector<AccelerationEvent> t = trainsequence.elementAt(i).getData();
// add the max and min acceleration, we later get the average
maxacc+=trainsequence.elementAt(i).getMaxAcceleration();
minacc+=trainsequence.elementAt(i).getMinAcceleration();
// transfer every single accelerationevent of each gesture to
// the new gesture sum
for(int j=0; j<trainsequence.elementAt(i).getData().size(); j++) {
sum.add(t.elementAt(j));
}
}
// get the average and set it to the sum gesture
sum.setMaxAndMinAcceleration(maxacc/trainsequence.size(), minacc/trainsequence.size());
// train the centeroids of the quantizer with this master gesture sum.
this.quantizer.trainCenteroids(sum);
// convert gesture vector to a sequence of discrete values
Vector<int[]> seqs = new Vector<int[]>();
for(int i=0; i<trainsequence.size(); i++) {
seqs.add(this.quantizer.getObservationSequence(trainsequence.elementAt(i)));
}
// train the markov model with this derived discrete sequences
this.markovmodell.train(seqs);
// set the default probability for use with the bayes classifier
this.setDefaultProbability(trainsequence);
}
/**
* Returns the probability that a gesture matches to this
* gesture model.
*
* @param gesture a gesture to test.
* @return probability that the gesture belongs to this gesture
* model.
*/
public double matches(Gesture gesture) {
int[] sequence = quantizer.getObservationSequence(gesture);
return this.markovmodell.getProbability(sequence);
}
/**
* For debug purposes or very technical interested people. :)
*/
public void printMap() {
Log.write("Gesture Quantizer-Map:");
this.quantizer.printMap();
}
/***
* For debug purposes or very technical interested people. :)
* @return
*/
public void print() {
Log.write(Log.DEBUG, "HMM-Print:", this);
this.markovmodell.print();
Log.write(Log.DEBUG, "Quantizer-Print:", this);
this.quantizer.printMap();
}
public int getNumStates() {
return this.numStates;
}
public int getNumObservations() {
return this.numObservations;
}
/**
* Returns the model probability for bayes.
*
* @return
* the model probability
*/
public double getDefaultProbability() {
return this.defaultprobability;
}
/**
* Since the bayes classifier needs a model probability for
* each model this has to be set once after training. As model
* probability the average probability value has been choosen.
*
* TODO: try lowest or highest model probability as alternative
*
* @param defsequence the vector of training sequences.
*/
private void setDefaultProbability(Vector<Gesture> defsequence) {
double prob=0;
for(int i=0; i<defsequence.size(); i++) {
prob+=this.matches(defsequence.elementAt(i));
}
this.defaultprobability=(prob)/defsequence.size();
}
public void setDefaultProbability(double prob) {
this.defaultprobability = prob;
Log.write("def-prob. set to = "+this.defaultprobability);
}
public Quantizer getQuantizer() {
return this.quantizer;
}
public void setQuantizer(Quantizer q) {
this.quantizer = q;
}
public HMM getHMM() {
return this.markovmodell;
}
public void setHMM(HMM hmm) {
this.markovmodell = hmm;
}
}

View File

@@ -1,314 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.text.DecimalFormat;
import java.util.Vector;
import org.wiigee.util.Log;
/**
* This is a Hidden Markov Model implementation which internally provides
* the basic algorithms for training and recognition (forward and backward
* algorithm). Since a regular Hidden Markov Model doesn't provide a possibility
* to train multiple sequences, this implementation has been optimized for this
* purposes using some state-of-the-art technologies described in several papers.
*
* @author Benjamin 'BePo' Poppinga
*
*/
public class HMM {
/** The number of states */
protected int numStates;
/** The number of observations */
protected int numObservations;
/** The initial probabilities for each state: p[state] */
protected double pi[];
/** The state change probability to switch from state A to
* state B: a[stateA][stateB] */
protected double a[][];
/** The probability to emit symbol S in state A: b[stateA][symbolS] */
protected double b[][];
/**
* Initialize the Hidden Markov Model in a left-to-right version.
*
* @param numStates Number of states
* @param numObservations Number of observations
*/
public HMM(int numStates, int numObservations) {
this.numStates = numStates;
this.numObservations = numObservations;
pi = new double[numStates];
a = new double[numStates][numStates];
b = new double[numStates][numObservations];
this.reset();
}
/**
* Reset the Hidden Markov Model to the initial left-to-right values.
*
*/
private void reset() {
int jumplimit = 2;
// set startup probability
pi[0] = 1;
for(int i=1; i<numStates; i++) {
pi[i] = 0;
}
// set state change probabilities in the left-to-right version
// NOTE: i now that this is dirty and very static. :)
for(int i=0; i<numStates; i++) {
for(int j=0; j<numStates; j++) {
if(i==numStates-1 && j==numStates-1) { // last row
a[i][j] = 1.0;
} else if(i==numStates-2 && j==numStates-2) { // next to last row
a[i][j] = 0.5;
} else if(i==numStates-2 && j==numStates-1) { // next to last row
a[i][j] = 0.5;
} else if(i<=j && i>j-jumplimit-1) {
a[i][j] = 1.0/(jumplimit+1);
} else {
a[i][j] = 0.0;
}
}
}
// emission probability
for(int i=0; i<numStates; i++) {
for(int j=0; j<numObservations; j++) {
b[i][j] = 1.0/(double)numObservations;
}
}
}
/**
* Trains the Hidden Markov Model with multiple sequences.
* This method is normally not known to basic hidden markov
* models, because they usually use the Baum-Welch-Algorithm.
* This method is NOT the traditional Baum-Welch-Algorithm.
*
* If you want to know in detail how it works please consider
* my Individuelles Projekt paper on the wiigee Homepage. Also
* there exist some english literature on the world wide web.
* Try to search for some papers by Rabiner or have a look at
* Vesa-Matti Mäntylä - "Discrete Hidden Markov Models with
* application to isolated user-dependent hand gesture recognition".
*
*/
public void train(Vector<int[]> trainsequence) {
double[][] a_new = new double[a.length][a.length];
double[][] b_new = new double[b.length][b[0].length];
// re calculate state change probability a
for(int i=0; i<a.length; i++) {
for(int j=0; j<a[i].length; j++) {
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
int[] sequence = trainsequence.elementAt(k);
double[][] fwd = this.forwardProc(sequence);
double[][] bwd = this.backwardProc(sequence);
double prob = this.getProbability(sequence);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
zaehler_innersum+=fwd[i][t]*a[i][j]*b[j][sequence[t+1]]*bwd[j][t+1];
nenner_innersum+=fwd[i][t]*bwd[i][t];
}
zaehler+=(1/prob)*zaehler_innersum;
nenner+=(1/prob)*nenner_innersum;
} // k
a_new[i][j] = zaehler/nenner;
} // j
} // i
// re calculate emission probability b
for(int i=0; i<b.length; i++) { // zustaende
for(int j=0; j<b[i].length; j++) { // symbole
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
int[] sequence = trainsequence.elementAt(k);
double[][] fwd = this.forwardProc(sequence);
double[][] bwd = this.backwardProc(sequence);
double prob = this.getProbability(sequence);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
if(sequence[t]==j) {
zaehler_innersum+=fwd[i][t]*bwd[i][t];
}
nenner_innersum+=fwd[i][t]*bwd[i][t];
}
zaehler+=(1/prob)*zaehler_innersum;
nenner+=(1/prob)*nenner_innersum;
} // k
b_new[i][j] = zaehler/nenner;
} // j
} // i
this.a=a_new;
this.b=b_new;
}
/**
* Traditional Forward Algorithm.
*
* @param o the observationsequence O
* @return Array[State][Time]
*
*/
protected double[][] forwardProc(int[] o) {
double[][] f = new double[numStates][o.length];
for (int l = 0; l < f.length; l++) {
f[l][0] = pi[l] * b[l][o[0]];
}
for (int i = 1; i < o.length; i++) {
for (int k = 0; k < f.length; k++) {
double sum = 0;
for (int l = 0; l < numStates; l++) {
sum += f[l][i-1] * a[l][k];
}
f[k][i] = sum * b[k][o[i]];
}
}
return f;
}
/**
* Returns the probability that a observation sequence O belongs
* to this Hidden Markov Model without using the bayes classifier.
* Internally the well known forward algorithm is used.
*
* @param o observation sequence
* @return probability that sequence o belongs to this hmm
*/
public double getProbability(int[] o) {
double prob = 0.0;
double[][] forward = this.forwardProc(o);
// add probabilities
for (int i = 0; i < forward.length; i++) { // for every state
prob += forward[i][forward[i].length - 1];
}
return prob;
}
/**
* Backward algorithm.
*
* @param o observation sequence o
* @return Array[State][Time]
*/
protected double[][] backwardProc(int[] o) {
int T = o.length;
double[][] bwd = new double[numStates][T];
/* Basisfall */
for (int i = 0; i < numStates; i++)
bwd[i][T - 1] = 1;
/* Induktion */
for (int t = T - 2; t >= 0; t--) {
for (int i = 0; i < numStates; i++) {
bwd[i][t] = 0;
for (int j = 0; j < numStates; j++)
bwd[i][t] += (bwd[j][t + 1] * a[i][j] * b[j][o[t + 1]]);
}
}
return bwd;
}
/**
* Prints everything about this model, including
* all values. For debug purposes or if you want
* to comprehend what happend to the model.
*
*/
public void print() {
DecimalFormat fmt = new DecimalFormat();
fmt.setMinimumFractionDigits(5);
fmt.setMaximumFractionDigits(5);
for (int i = 0; i < numStates; i++)
Log.write(Log.DEBUG, "pi(" + i + ") = " + fmt.format(pi[i]), this);
Log.write(Log.DEBUG, "", this);
for (int i = 0; i < numStates; i++) {
for (int j = 0; j < numStates; j++)
Log.write(Log.DEBUG, "a(" + i + "," + j + ") = "
+ fmt.format(a[i][j]) + " ", this);
Log.write(Log.DEBUG, "", this);
}
Log.write("");
for (int i = 0; i < numStates; i++) {
for (int k = 0; k < numObservations; k++)
Log.write(Log.DEBUG, "b(" + i + "," + k + ") = "
+ fmt.format(b[i][k]) + " ", this);
Log.write(Log.DEBUG, "", this);
}
}
public double[] getPi() {
return this.pi;
}
public void setPi(double[] pi) {
this.pi = pi;
}
public double[][] getA() {
return this.a;
}
public void setA(double[][] a) {
this.a = a;
}
public double[][] getB() {
return this.b;
}
public void setB(double[][] b) {
this.b=b;
}
}

View File

@@ -1,449 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.text.*;
import java.util.Vector;
import java.lang.Math;
import org.wiigee.util.Log;
/**
* This is a Hidden Markov Model implementation which internally provides
* the basic algorithms for training and recognition (forward and backward
* algorithm). Since a regular Hidden Markov Model doesn't provide a possibility
* to train multiple sequences, this implementation has been optimized for this
* purposes using some state-of-the-art technologies described in several papers.
*
* @author Benjamin 'BePo' Poppinga
*
*/
public class PreciseHMM {
/** The number of states */
private int numStates;
/** The number of observations */
private int sigmaSize;
/** The initial probabilities for each state: p[state] */
public double pi[];
/** The state change probability to switch from state A to
* state B: a[stateA][stateB] */
public double a[][];
/** The probability to emit symbol S in state A: b[stateA][symbolS] */
public double b[][];
/**
* Initialize the Hidden Markov Model in a left-to-right version.
*
* @param numStates Number of states
* @param sigmaSize Number of observations
*/
public PreciseHMM(int numStates, int sigmaSize) {
this.numStates = numStates;
this.sigmaSize = sigmaSize;
pi = new double[numStates];
a = new double[numStates][numStates];
b = new double[numStates][sigmaSize];
this.reset();
}
/**
* Reset the Hidden Markov Model to the initial left-to-right values.
*
*/
private void reset() {
int jumplimit = 2;
// set startup probability
pi[0] = 1.0;
for(int i=1; i<numStates; i++) {
pi[i] = 0;
}
// set state change probabilities in the left-to-right version
// NOTE: i now that this is dirty and very static. :)
for(int i=0; i<numStates; i++) {
for(int j=0; j<numStates; j++) {
if(i==numStates-1 && j==numStates-1) { // last row
a[i][j] = 1.0;
} else if(i==numStates-2 && j==numStates-2) { // next to last row
a[i][j] = 0.5;
} else if(i==numStates-2 && j==numStates-1) { // next to last row
a[i][j] = 0.5;
} else if(i<=j && i>j-jumplimit-1) {
a[i][j] = 1.0/(jumplimit+1);
} else {
a[i][j] = 0.0;
}
}
}
// emission probability
for(int i=0; i<numStates; i++) {
for(int j=0; j<sigmaSize; j++) {
b[i][j] = 1.0/(double)sigmaSize;
}
}
}
/**
* Trains the Hidden Markov Model with multiple sequences.
* This method is normally not known to basic hidden markov
* models, because they usually use the Baum-Welch-Algorithm.
* This method is NOT the traditional Baum-Welch-Algorithm.
*
* If you want to know in detail how it works please consider
* my Individuelles Projekt paper on the wiigee Homepage. Also
* there exist some english literature on the world wide web.
* Try to search for some papers by Rabiner or have a look at
* Vesa-Matti Mäntylä - "Discrete Hidden Markov Models with
* application to isolated user-dependent hand gesture recognition".
*
*/
public void train(Vector<int[]> trainsequence) {
double[][] a_new = new double[a.length][a.length];
double[][] b_new = new double[b.length][b[0].length];
// re calculate state change probability a
for(int i=0; i<a.length; i++) {
for(int j=0; j<a[i].length; j++) {
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
//this.reset();
int[] sequence = trainsequence.elementAt(k);
double[] sf = this.calculateScalingFactor(sequence);
double[][] fwd = this.scaledForwardProc(sequence);
double[][] bwd = this.scaledBackwardProc(sequence, sf);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
zaehler_innersum+=fwd[i][t]*a[i][j]*b[j][sequence[t+1]]*bwd[j][t+1]*sf[t+1];
nenner_innersum+=fwd[i][t]*bwd[i][t];
}
zaehler+=zaehler_innersum;
nenner+=nenner_innersum;
} // k
a_new[i][j] = zaehler/nenner;
} // j
} // i
// re calculate emission probability b
for(int i=0; i<b.length; i++) { // zustaende
for(int j=0; j<b[i].length; j++) { // symbole
double zaehler=0;
double nenner=0;
for(int k=0; k<trainsequence.size(); k++) {
//this.reset();
int[] sequence = trainsequence.elementAt(k);
double[] sf = this.calculateScalingFactor(sequence);
double[][] fwd = this.scaledForwardProc(sequence);
double[][] bwd = this.scaledBackwardProc(sequence, sf);
double zaehler_innersum=0;
double nenner_innersum=0;
for(int t=0; t<sequence.length-1; t++) {
if(sequence[t]==j) {
zaehler_innersum+=fwd[i][t]*bwd[i][t]*sf[t];
}
nenner_innersum+=fwd[i][t]*bwd[i][t]*sf[t];
}
zaehler+=zaehler_innersum;
nenner+=nenner_innersum;
} // k
b_new[i][j] = zaehler/nenner;
} // j
} // i
this.a=a_new;
this.b=b_new;
}
private double[] calculateScalingFactor(int[] sequence) {
// for all indexing: [state][time]
double[][] fwd = this.forwardProc(sequence); // normal
double[][] help = new double[fwd.length][fwd[0].length];
double[][] scaled = new double[fwd.length][fwd[0].length];
double[] sf = new double[sequence.length];
// ************** BASIS *************
// Basis, fixed t=0
// setup, because needed for further calculations
for(int i=0; i<help.length; i++) {
help[i][0] = fwd[i][0];
}
// setup initial scaled array
double sum0 = 0;
for(int i=0; i<help.length; i++) {
sum0+=help[i][0];
}
for(int i=0; i<scaled.length; i++) {
scaled[i][0] = help[i][0] / sum0;
}
// calculate scaling factor
sf[0] = 1/sum0;
// **************** INDUCTION ***************
// end of fixed t = 0
// starting with t>1 to sequence.length
// induction, further calculations
for(int t=1; t<sequence.length; t++) {
// calculate help
for(int i=0; i<help.length; i++) {
for(int j=0; j<this.numStates; j++) {
help[i][t]+=scaled[j][t-1]*a[j][i]*b[i][sequence[t]];
}
}
double sum = 0;
for(int i=0; i<help.length; i++) {
sum+=help[i][t];
}
for(int i=0; i<scaled.length; i++) {
scaled[i][t] = help[i][t] / sum;
}
// calculate scaling factor
sf[t] = 1 / sum;
} // t
return sf;
} // calculateScalingFactor
/***
* Returns the scaled Forward variable.
* TODO: Maybe try out if the other precalculated method is faster.
* @param sequence
* @return
*/
private double[][] scaledForwardProc(int[] sequence) {
double[][] fwd = this.forwardProc(sequence);
double[][] out = new double[fwd.length][fwd[0].length];
for(int i=0; i<fwd.length; i++) {
for(int t=0; t<sequence.length; t++) {
double sum = 0;
for(int j=0; j<fwd.length; j++) {
sum+=fwd[j][t];
}
out[i][t] = fwd[i][t] / sum;
}
}
return out;
}
private double[][] scaledBackwardProc(int[] sequence, double[] sf) {
double[][] bwd = this.backwardProc(sequence);
double[][] out = new double[bwd.length][bwd[0].length];
for(int i=0; i<bwd.length; i++) {
for(int t=0; t<sequence.length; t++) {
out[i][t]=1;
for(int r=t+1; r<sequence.length; r++) {
out[i][t]*=sf[r]*bwd[i][t];
}
}
}
return out;
}
/**
* Returns the probability that a observation sequence O belongs
* to this Hidden Markov Model without using the bayes classifier.
* Internally the well known forward algorithm is used.
*
* @param o observation sequence
* @return probability that sequence o belongs to this hmm
*/
public double getProbability(int[] o) {
return scaledViterbi(o);
//return sProbability(o);
/*double prob = 0.0;
double[][] forward = this.forwardProc(o);
// add probabilities
for (int i = 0; i < forward.length; i++) { // for every state
prob += forward[i][forward[i].length - 1];
}
return prob;*/
}
public double sProbability(int[] o) {
double prod = 1.0;
double[][] fwd = this.scaledForwardProc(o);
for(int t=0; t<o.length; t++) {
double sum = 0.0;
for(int i=0; i<this.numStates; i++) {
sum+=fwd[i][t];
}
sum = 1/sum;
prod*=sum;
}
return 1/prod;
}
public double scaledViterbi(int[] o) {
double[][] phi = new double[this.numStates][o.length]; //phi[states][oseq]
// init
for(int i=0; i<this.numStates; i++) {
phi[i][0] = Math.log(pi[i]) + Math.log(b[i][o[0]]);
}
// induction
for(int t=1; t<o.length; t++) {
for(int j=0; j<this.numStates; j++) {
double max = Double.NEGATIVE_INFINITY;
for(int i=0; i<this.numStates; i++) {
double val = phi[i][t-1] + Math.log(this.a[i][j]);
if(val>max) {
max = val;
}
}
phi[j][t] = max + Math.log(this.b[j][o[t]]);
}
}
// conclusion
double lp = Double.NEGATIVE_INFINITY;
for(int i=0; i<this.numStates; i++) {
if(phi[i][o.length-1]>lp) {
lp = phi[i][o.length-1];
}
}
//Log.write("log p = "+lp);
//return lp;
// we now have log10(p) calculated, transform to p.
Log.write("prob = "+Math.exp(lp));
return Math.exp(lp);
//return Math.pow(10, lp);
}
/**
* Traditional Forward Algorithm.
*
* @param o the observationsequence O
* @return Array[State][Time]
*
*/
private double[][] forwardProc(int[] o) {
double[][] f = new double[numStates][o.length];
for (int l = 0; l < f.length; l++) {
f[l][0] = pi[l] * b[l][o[0]];
}
for (int i = 1; i < o.length; i++) {
for (int k = 0; k < f.length; k++) {
double sum = 0;
for (int l = 0; l < numStates; l++) {
sum += f[l][i-1] * a[l][k];
}
f[k][i] = sum * b[k][o[i]];
}
}
return f;
}
/**
* Backward algorithm.
*
* @param o observation sequence o
* @return Array[State][Time]
*/
private double[][] backwardProc(int[] o) {
int T = o.length;
double[][] bwd = new double[numStates][T];
/* Basisfall */
for (int i = 0; i < numStates; i++)
bwd[i][T - 1] = 1;
/* Induktion */
for (int t = T - 2; t >= 0; t--) {
for (int i = 0; i < numStates; i++) {
bwd[i][t] = 0;
for (int j = 0; j < numStates; j++)
bwd[i][t] += (bwd[j][t + 1] * a[i][j] * b[j][o[t + 1]]);
}
}
return bwd;
}
/**
* Prints everything about this model, including
* all values. For debug purposes or if you want
* to comprehend what happend to the model.
*
*/
public void print() {
DecimalFormat fmt = new DecimalFormat();
fmt.setMinimumFractionDigits(10);
fmt.setMaximumFractionDigits(10);
for (int i = 0; i < numStates; i++)
Log.write("pi(" + i + ") = " + fmt.format(pi[i]));
Log.write("");
for (int i = 0; i < numStates; i++) {
for (int j = 0; j < numStates; j++)
Log.write("a(" + i + "," + j + ") = "
+ fmt.format(a[i][j]) + " ");
Log.write("");
}
Log.write("");
for (int i = 0; i < numStates; i++) {
for (int k = 0; k < sigmaSize; k++)
Log.write("b(" + i + "," + k + ") = "
+ fmt.format(b[i][k]) + " ");
Log.write("");
}
}
public double[][] getA() {
return this.a;
}
public void setA(double[][] a) {
this.a = a;
}
public double[][] getB() {
return this.b;
}
public void setB(double[][] b) {
this.b=b;
}
}

View File

@@ -1,72 +0,0 @@
package org.wiigee.logic;
import java.util.Vector;
import org.wiigee.event.AccelerationEvent;
import org.wiigee.event.ButtonPressedEvent;
import org.wiigee.event.ButtonReleasedEvent;
import org.wiigee.event.AccelerationListener;
import org.wiigee.event.ButtonListener;
import org.wiigee.event.GestureEvent;
import org.wiigee.event.GestureListener;
import org.wiigee.event.MotionStartEvent;
import org.wiigee.event.MotionStopEvent;
import org.wiigee.util.Log;
public abstract class ProcessingUnit implements AccelerationListener, ButtonListener {
// Classifier
protected Classifier classifier;
// Listener
private Vector<GestureListener> gesturelistener = new Vector<GestureListener>();
public ProcessingUnit() {
this.classifier = new Classifier();
}
/**
* Add an GestureListener to receive GestureEvents.
*
* @param g
* Class which implements GestureListener interface.
*/
public void addGestureListener(GestureListener g) {
this.gesturelistener.add(g);
}
protected void fireGestureEvent(boolean valid, int id, double probability) {
GestureEvent w = new GestureEvent(this, valid, id, probability);
for (int i = 0; i < this.gesturelistener.size(); i++) {
this.gesturelistener.get(i).gestureReceived(w);
}
}
public abstract void accelerationReceived(AccelerationEvent event);
public abstract void buttonPressReceived(ButtonPressedEvent event);
public abstract void buttonReleaseReceived(ButtonReleasedEvent event);
public abstract void motionStartReceived(MotionStartEvent event);
public abstract void motionStopReceived(MotionStopEvent event);
/**
* Resets the complete gesturemodel. After reset no gesture is known
* to the system.
*/
public void reset() {
if (this.classifier.getCountOfGestures() > 0) {
this.classifier.clear();
Log.write("### Model reset ###");
} else {
Log.write("There doesn't exist any data to reset.");
}
}
// File IO
public abstract void loadGesture(String filename);
public abstract void saveGesture(int id, String filename);
}

View File

@@ -1,309 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.util.Vector;
import org.wiigee.event.AccelerationEvent;
import org.wiigee.util.Log;
/**
* This class implements a quantization component. In this case a
* k-mean-algorithm is used. In this case the initial values of the algorithm
* are ordered as two intersected circles, representing an abstract globe with
* k=14 elements. As a special feature the radius of this globe would be
* calculated dynamically before the training of this component.
*
* @author Benjamin 'BePo' Poppinga
*/
public class Quantizer {
/** This is the initial radius of this model. */
private double radius;
/** Number of states from the following Hidden Markov Model */
private int numStates;
/** The representation of the so called Centeroids */
private double[][] map;
/** True, if map is already trained. */
private boolean maptrained;
/**
* Initialize a empty quantizer. The states variable is necessary since some
* algorithms need this value to calculate their values correctly.
*
* @param numStates
* number of hidden markov model states
*/
public Quantizer(int numStates) {
this.numStates = numStates;
this.map = new double[14][3];
this.maptrained = false;
}
/**
* Trains this Quantizer with a specific gesture. This means that the
* positions of the centeroids would adapt to this training gesture. In our
* case this would happen with a summarized virtual gesture, containing all
* the other gestures.
*
* @param gesture
* the summarized virtual gesture
*/
public void trainCenteroids(Gesture gesture) {
Vector<AccelerationEvent> data = gesture.getData();
double pi = Math.PI;
this.radius = (gesture.getMaxAcceleration() + gesture
.getMinAcceleration()) / 2;
Log.write("Using radius: " + this.radius);
// x , z , y
if (!this.maptrained) {
this.maptrained = true;
this.map[0] = new double[] { this.radius, 0.0, 0.0 };
this.map[1] = new double[] { Math.cos(pi / 4) * this.radius, 0.0,
Math.sin(pi / 4) * this.radius };
this.map[2] = new double[] { 0.0, 0.0, this.radius };
this.map[3] = new double[] { Math.cos(pi * 3 / 4) * this.radius,
0.0, Math.sin(pi * 3 / 4) * this.radius };
this.map[4] = new double[] { -this.radius, 0.0, 0.0 };
this.map[5] = new double[] { Math.cos(pi * 5 / 4) * this.radius,
0.0, Math.sin(pi * 5 / 4) * this.radius };
this.map[6] = new double[] { 0.0, 0.0, -this.radius };
this.map[7] = new double[] { Math.cos(pi * 7 / 4) * this.radius,
0.0, Math.sin(pi * 7 / 4) * this.radius };
this.map[8] = new double[] { 0.0, this.radius, 0.0 };
this.map[9] = new double[] { 0.0, Math.cos(pi / 4) * this.radius,
Math.sin(pi / 4) * this.radius };
this.map[10] = new double[] { 0.0,
Math.cos(pi * 3 / 4) * this.radius,
Math.sin(pi * 3 / 4) * this.radius };
this.map[11] = new double[] { 0.0, -this.radius, 0.0 };
this.map[12] = new double[] { 0.0,
Math.cos(pi * 5 / 4) * this.radius,
Math.sin(pi * 5 / 4) * this.radius };
this.map[13] = new double[] { 0.0,
Math.cos(pi * 7 / 4) * this.radius,
Math.sin(pi * 7 / 4) * this.radius };
}
int[][] g_alt = new int[this.map.length][data.size()];
int[][] g = new int[this.map.length][data.size()];
do {
// Derive new Groups...
g_alt = this.copyarray(g);
g = this.deriveGroups(gesture);
// calculate new centeroids
for (int i = 0; i < this.map.length; i++) {
double zaehlerX = 0;
double zaehlerY = 0;
double zaehlerZ = 0;
int nenner = 0;
for (int j = 0; j < data.size(); j++) {
if (g[i][j] == 1) {
zaehlerX += data.elementAt(j).getX();
zaehlerY += data.elementAt(j).getY();
zaehlerZ += data.elementAt(j).getZ();
nenner++;
}
}
if (nenner > 1) { // nur wenn der nenner>0 oder >1??? ist muss
// was
// geaendert werden
// Log.write("Setze neuen Centeroid!");
this.map[i] = new double[] {(zaehlerX / (double) nenner),
(zaehlerY / (double) nenner),
(zaehlerZ / (double) nenner) };
// Log.write("Centeroid: "+i+": "+newcenteroid[0]+":"+newcenteroid[1]);
}
} // new centeroids
} while (!equalarrays(g_alt, g));
// Debug: Printout groups
/*
* for (int i = 0; i < n; i++) { for (int j = 0; j < this.data.size();
* j++) { Log.write(g[i][j] + "|"); } Log.write(""); }
*/
}
/**
* This methods looks up a Gesture to a group matrix, used by the
* k-mean-algorithm (traincenteroid method) above.
*
* @param gesture
* the gesture
*/
public int[][] deriveGroups(Gesture gesture) {
Vector<AccelerationEvent> data = gesture.getData();
int[][] groups = new int[this.map.length][data.size()];
// Calculate cartesian distance
double[][] d = new double[this.map.length][data.size()];
double[] curr = new double[3];
double[] vector = new double[3];
for (int i = 0; i < this.map.length; i++) { // zeilen
double[] ref = this.map[i];
for (int j = 0; j < data.size(); j++) { // spalten
curr[0] = data.elementAt(j).getX();
curr[1] = data.elementAt(j).getY();
curr[2] = data.elementAt(j).getZ();
vector[0] = ref[0] - curr[0];
vector[1] = ref[1] - curr[1];
vector[2] = ref[2] - curr[2];
d[i][j] = Math.sqrt((vector[0] * vector[0])
+ (vector[1] * vector[1]) + (vector[2] * vector[2]));
// Log.write(d[i][j] + "|");
}
// Log.write("");
}
// look, to which group a value belongs
for (int j = 0; j < data.size(); j++) {
double smallest = Double.MAX_VALUE;
int row = 0;
for (int i = 0; i < this.map.length; i++) {
if (d[i][j] < smallest) {
smallest = d[i][j];
row = i;
}
groups[i][j] = 0;
}
groups[row][j] = 1; // guppe gesetzt
}
// Debug output
/*
* for (int i = 0; i < groups.length; i++) { // zeilen for (int j = 0; j
* < groups[i].length; j++) { Log.write(groups[i][j] + "|"); }
* Log.write(""); }
*/
return groups;
}
/**
* With this method you can transform a gesture to a discrete symbol
* sequence with values between 0 and granularity (number of observations).
*
* @param gesture
* Gesture to get the observationsequence to.
*/
public int[] getObservationSequence(Gesture gesture) {
int[][] groups = this.deriveGroups(gesture);
Vector<Integer> sequence = new Vector<Integer>();
// Log.write("Visible symbol sequence: ");
for (int j = 0; j < groups[0].length; j++) { // spalten
for (int i = 0; i < groups.length; i++) { // zeilen
if (groups[i][j] == 1) {
// Log.write(" "+ i);
sequence.add(i);
break;
}
}
}
// die sequenz darf nicht zu kurz sein... mindestens so lang
// wie die anzahl der zustände. weil sonst die formeln nicht klappen.
// english: this is very dirty! it have to be here because if not
// too short sequences would cause an error. i've to think about a
// better resolution than copying the old value a few time.
while (sequence.size() < this.numStates) {
sequence.add(sequence.elementAt(sequence.size() - 1));
// Log.write(" "+sequence.elementAt(sequence.size()-1));
}
// Log.write("");
int[] out = new int[sequence.size()];
for (int i = 0; i < sequence.size(); i++) {
out[i] = sequence.elementAt(i);
}
return out;
}
/**
* Prints out the current centeroids-map. Its for debug or technical
* interests.
*/
public void printMap() {
Log.write(Log.DEBUG, "Centeroids:", this);
for (int i = 0; i < this.map.length; i++) {
Log.write(Log.DEBUG, i + ". :" + this.map[i][0] + ":"
+ this.map[i][1] + ":" + this.map[i][2], this);
}
}
/**
* Function to deepcopy an array.
*/
private int[][] copyarray(int[][] alt) {
int[][] neu = new int[alt.length][alt[0].length];
for (int i = 0; i < alt.length; i++) {
for (int j = 0; j < alt[i].length; j++) {
neu[i][j] = alt[i][j];
}
}
return neu;
}
/**
* Function to look if the two arrays containing the same values.
*/
private boolean equalarrays(int[][] one, int[][] two) {
for (int i = 0; i < one.length; i++) {
for (int j = 0; j < one[i].length; j++) {
if (!(one[i][j] == two[i][j])) {
return false;
}
}
}
return true;
}
public double getRadius() {
return this.radius;
}
public double[][] getHashMap() {
return this.map;
}
public void setUpManually(double[][] map, double radius) {
this.map = map;
this.radius = radius;
}
}

View File

@@ -1,188 +0,0 @@
/*
* wiigee - accelerometerbased gesture recognition
* Copyright (C) 2007, 2008, 2009 Benjamin Poppinga
*
* Developed at University of Oldenburg
* Contact: wiigee@benjaminpoppinga.de
*
* This file is part of wiigee.
*
* wiigee is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
package org.wiigee.logic;
import java.util.Vector;
import org.wiigee.event.*;
import org.wiigee.util.Log;
/**
* This class analyzes the AccelerationEvents emitted from a Wiimote
* and further creates and manages the different models for each type
* of gesture.
*
* @author Benjamin 'BePo' Poppinga
*/
public class TriggeredProcessingUnit extends ProcessingUnit {
// gesturespecific values
private Gesture current; // current gesture
private Vector<Gesture> trainsequence;
// State variables
private boolean learning, analyzing;
public TriggeredProcessingUnit() {
super();
this.learning=false;
this.analyzing=false;
this.current=new Gesture();
this.trainsequence=new Vector<Gesture>();
}
/**
* Since this class implements the WiimoteListener this procedure is
* necessary. It contains the filtering (directional equivalence filter)
* and adds the incoming data to the current motion, we want to train
* or recognize.
*
* @param event The acceleration event which has to be processed by the
* directional equivalence filter and which has to be added to the current
* motion in recognition or training process.
*/
public void accelerationReceived(AccelerationEvent event) {
if(this.learning || this.analyzing) {
this.current.add(event); // add event to gesture
}
}
/**
* This method is from the WiimoteListener interface. A button press
* is used to control the data flow inside the structures.
*
*/
public void buttonPressReceived(ButtonPressedEvent event) {
this.handleStartEvent(event);
}
public void buttonReleaseReceived(ButtonReleasedEvent event) {
this.handleStopEvent(event);
}
public void motionStartReceived(MotionStartEvent event) {
// this.handleStartEvent(event);
}
public void motionStopReceived(MotionStopEvent event) {
// this.handleStopEvent(event);
}
public void handleStartEvent(ActionStartEvent event) {
// TrainButton = record a gesture for learning
if((!this.analyzing && !this.learning) &&
event.isTrainInitEvent()) {
Log.write("Training started!");
this.learning=true;
}
// RecognitionButton = record a gesture for recognition
if((!this.analyzing && !this.learning) &&
event.isRecognitionInitEvent()) {
Log.write("Recognition started!");
this.analyzing=true;
}
// CloseGestureButton = starts the training of the model with multiple
// recognized gestures, contained in trainsequence
if((!this.analyzing && !this.learning) &&
event.isCloseGestureInitEvent()) {
if(this.trainsequence.size()>0) {
Log.write("Training the model with "+this.trainsequence.size()+" gestures...");
this.learning=true;
GestureModel m = new GestureModel();
m.train(this.trainsequence);
// m.print(); // Prints model details after training
this.classifier.addGestureModel(m);
this.trainsequence=new Vector<Gesture>();
this.learning=false;
} else {
Log.write("There is nothing to do. Please record some gestures first.");
}
}
}
public void handleStopEvent(ActionStopEvent event) {
if(this.learning) { // button release and state=learning, stops learning
if(this.current.getCountOfData()>0) {
Log.write("Finished recording (training)...");
Log.write("Data: "+this.current.getCountOfData());
Gesture gesture = new Gesture(this.current);
this.trainsequence.add(gesture);
this.current=new Gesture();
this.learning=false;
} else {
Log.write("There is no data.");
Log.write("Please train the gesture again.");
this.learning=false; // ?
}
}
else if(this.analyzing) { // button release and state=analyzing, stops analyzing
if(this.current.getCountOfData()>0) {
Log.write("Finished recording (recognition)...");
Log.write("Compare gesture with "+this.classifier.getCountOfGestures()+" other gestures.");
Gesture gesture = new Gesture(this.current);
int recognized = this.classifier.classifyGesture(gesture);
if(recognized!=-1) {
double recogprob = this.classifier.getLastProbability();
this.fireGestureEvent(true, recognized, recogprob);
Log.write("######");
Log.write("Gesture No. "+recognized+" recognized: "+recogprob);
Log.write("######");
} else {
this.fireGestureEvent(false, 0, 0.0);
Log.write("######");
Log.write("No gesture recognized.");
Log.write("######");
}
this.current=new Gesture();
this.analyzing=false;
} else {
Log.write("There is no data.");
Log.write("Please recognize the gesture again.");
this.analyzing=false; // ?
}
}
}
@Override
public void loadGesture(String filename) {
GestureModel g = org.wiigee.util.FileIO.readFromFile(filename);
this.classifier.addGestureModel(g);
}
@Override
public void saveGesture(int id, String filename) {
org.wiigee.util.FileIO.writeToFile(this.classifier.getGestureModel(id), filename);
}
}

View File

@@ -1,85 +0,0 @@
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package org.wiigee.logic;
import java.util.Vector;
/**
*
* @author bepo
*/
public class XHMM extends HMM {
// the temporal values for scaling
int[] currSequence;
double[][] currForward;
double[][] scaledForward;
double[][] currBackward;
double[][] scaledBackward;
double[] currScaling;
double[][] currHelper;
public XHMM(int numStates, int numObservations) {
super(numStates, numObservations);
}
@Override
public void train(Vector<int[]> trainsequence) {
}
private double[][] getScaledForward(int[] sequence) {
double[][] fwd = this.forwardProc(sequence);
double[][] retVal = new double[fwd.length][fwd[0].length];
for(int t=0; t<fwd.length; t++) {
for(int i=0; i<fwd[0].length; i++) {
// build sum
double sum = 0.0;
for(int n=0; n<this.numStates; n++) {
sum += fwd[t][n];
}
retVal[t][i] = fwd[t][i] / sum;
}
}
return retVal;
}
private double[][] getScaledBackward(int[] sequence) {
double[][] fwd = this.forwardProc(sequence);
double[][] bwd = this.backwardProc(sequence);
double[][] retVal = new double[bwd.length][bwd[0].length];
for(int t=0; t<bwd.length; t++) {
for(int i=0; i<bwd[0].length; i++) {
// build sum
double sum = 0.0;
for(int n=0; n<this.numStates; n++) {
sum += fwd[t][n];
}
retVal[t][i] = bwd[t][i] / sum;
}
}
return retVal;
}
private double getScalingDenominator(int t, int[] sequence) {
double retVal = 0.0;
double[][] fwd = this.forwardProc(sequence);
double[][] sfwd = this.getScaledForward(sequence);
double[][] helper = new double[sfwd.length][sfwd[0].length];
if(t==0) {
}
return retVal;
}
}