Move examples into subfolders, add READMEs

This commit is contained in:
Petteri Aimonen
2013-09-13 12:59:31 +03:00
parent fd9a79a06d
commit f47410ea4b
24 changed files with 187 additions and 55 deletions

View File

@@ -0,0 +1,19 @@
CFLAGS = -ansi -Wall -Werror -g -O0
# Path to the nanopb root folder
NANOPB_DIR = ../..
DEPS = $(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_decode.h \
$(NANOPB_DIR)/pb_encode.c $(NANOPB_DIR)/pb_encode.h $(NANOPB_DIR)/pb.h
CFLAGS += -I$(NANOPB_DIR)
all: server client
clean:
rm -f server client fileproto.pb.c fileproto.pb.h
%: %.c $(DEPS) fileproto.pb.h fileproto.pb.c
$(CC) $(CFLAGS) -o $@ $< $(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_encode.c fileproto.pb.c common.c
fileproto.pb.c fileproto.pb.h: fileproto.proto $(NANOPB_DIR)/generator/nanopb_generator.py
protoc -ofileproto.pb $<
python $(NANOPB_DIR)/generator/nanopb_generator.py fileproto.pb

View File

@@ -0,0 +1,60 @@
Nanopb example "network_server"
===============================
This example demonstrates the use of nanopb to communicate over network
connections. It consists of a server that sends file listings, and of
a client that requests the file list from the server.
Example usage
-------------
user@host:~/nanopb/examples/network_server$ make # Build the example
protoc -ofileproto.pb fileproto.proto
python ../../generator/nanopb_generator.py fileproto.pb
Writing to fileproto.pb.h and fileproto.pb.c
cc -ansi -Wall -Werror -I .. -g -O0 -I../.. -o server server.c
../../pb_decode.c ../../pb_encode.c fileproto.pb.c common.c
cc -ansi -Wall -Werror -I .. -g -O0 -I../.. -o client client.c
../../pb_decode.c ../../pb_encode.c fileproto.pb.c common.c
user@host:~/nanopb/examples/network_server$ ./server & # Start the server on background
[1] 24462
petteri@oddish:~/nanopb/examples/network_server$ ./client /bin # Request the server to list /bin
Got connection.
Listing directory: /bin
1327119 bzdiff
1327126 bzless
1327147 ps
1327178 ntfsmove
1327271 mv
1327187 mount
1327259 false
1327266 tempfile
1327285 zfgrep
1327165 gzexe
1327204 nc.openbsd
1327260 uname
Details of implementation
-------------------------
fileproto.proto contains the portable Google Protocol Buffers protocol definition.
It could be used as-is to implement a server or a client in any other language, for
example Python or Java.
fileproto.options contains the nanopb-specific options for the protocol file. This
sets the amount of space allocated for file names when decoding messages.
common.c/h contains functions that allow nanopb to read and write directly from
network socket. This way there is no need to allocate a separate buffer to store
the message.
server.c contains the code to open a listening socket, to respond to clients and
to list directory contents.
client.c contains the code to connect to a server, to send a request and to print
the response message.
The code is implemented using the POSIX socket api, but it should be easy enough
to port into any other socket api, such as lwip.

View File

@@ -0,0 +1,116 @@
/* This is a simple TCP client that connects to port 1234 and prints a list
* of files in a given directory.
*
* It directly deserializes and serializes messages from network, minimizing
* memory use.
*
* For flexibility, this example is implemented using posix api.
* In a real embedded system you would typically use some other kind of
* a communication and filesystem layer.
*/
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <unistd.h>
#include <dirent.h>
#include <stdio.h>
#include <string.h>
#include <pb_encode.h>
#include <pb_decode.h>
#include "fileproto.pb.h"
#include "common.h"
bool printfile_callback(pb_istream_t *stream, const pb_field_t *field, void **arg)
{
FileInfo fileinfo;
if (!pb_decode(stream, FileInfo_fields, &fileinfo))
return false;
printf("%-10lld %s\n", (long long)fileinfo.inode, fileinfo.name);
return true;
}
bool listdir(int fd, char *path)
{
ListFilesRequest request;
ListFilesResponse response;
pb_istream_t input = pb_istream_from_socket(fd);
pb_ostream_t output = pb_ostream_from_socket(fd);
uint8_t zero = 0;
if (path == NULL)
{
request.has_path = false;
}
else
{
request.has_path = true;
if (strlen(path) + 1 > sizeof(request.path))
{
fprintf(stderr, "Too long path.\n");
return false;
}
strcpy(request.path, path);
}
if (!pb_encode(&output, ListFilesRequest_fields, &request))
{
fprintf(stderr, "Encoding failed.\n");
return false;
}
/* We signal the end of request with a 0 tag. */
pb_write(&output, &zero, 1);
response.file.funcs.decode = &printfile_callback;
if (!pb_decode(&input, ListFilesResponse_fields, &response))
{
fprintf(stderr, "Decode failed: %s\n", PB_GET_ERROR(&input));
return false;
}
if (response.path_error)
{
fprintf(stderr, "Server reported error.\n");
return false;
}
return true;
}
int main(int argc, char **argv)
{
int sockfd;
struct sockaddr_in servaddr;
char *path = NULL;
if (argc > 1)
path = argv[1];
sockfd = socket(AF_INET, SOCK_STREAM, 0);
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
servaddr.sin_port = htons(1234);
if (connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr)) != 0)
{
perror("connect");
return 1;
}
if (!listdir(sockfd, path))
return 2;
close(sockfd);
return 0;
}

View File

@@ -0,0 +1,40 @@
/* Simple binding of nanopb streams to TCP sockets.
*/
#include <sys/socket.h>
#include <sys/types.h>
#include <pb_encode.h>
#include <pb_decode.h>
#include "common.h"
static bool write_callback(pb_ostream_t *stream, const uint8_t *buf, size_t count)
{
int fd = (intptr_t)stream->state;
return send(fd, buf, count, 0) == count;
}
static bool read_callback(pb_istream_t *stream, uint8_t *buf, size_t count)
{
int fd = (intptr_t)stream->state;
int result;
result = recv(fd, buf, count, MSG_WAITALL);
if (result == 0)
stream->bytes_left = 0; /* EOF */
return result == count;
}
pb_ostream_t pb_ostream_from_socket(int fd)
{
pb_ostream_t stream = {&write_callback, (void*)(intptr_t)fd, SIZE_MAX, 0};
return stream;
}
pb_istream_t pb_istream_from_socket(int fd)
{
pb_istream_t stream = {&read_callback, (void*)(intptr_t)fd, SIZE_MAX};
return stream;
}

View File

@@ -0,0 +1,9 @@
#ifndef _PB_EXAMPLE_COMMON_H_
#define _PB_EXAMPLE_COMMON_H_
#include <pb.h>
pb_ostream_t pb_ostream_from_socket(int fd);
pb_istream_t pb_istream_from_socket(int fd);
#endif

View File

@@ -0,0 +1,13 @@
# This file defines the nanopb-specific options for the messages defined
# in fileproto.proto.
#
# If you come from high-level programming background, the hardcoded
# maximum lengths may disgust you. However, if your microcontroller only
# has a few kB of ram to begin with, setting reasonable limits for
# filenames is ok.
#
# On the other hand, using the callback interface, it is not necessary
# to set a limit on the number of files in the response.
ListFilesRequest.path max_size:128
FileInfo.name max_size:128

View File

@@ -0,0 +1,18 @@
// This defines protocol for a simple server that lists files.
//
// See also the nanopb-specific options in fileproto.options.
message ListFilesRequest {
optional string path = 1 [default = "/"];
}
message FileInfo {
required uint64 inode = 1;
required string name = 2;
}
message ListFilesResponse {
optional bool path_error = 1 [default = false];
repeated FileInfo file = 2;
}

View File

@@ -0,0 +1,131 @@
/* This is a simple TCP server that listens on port 1234 and provides lists
* of files to clients, using a protocol defined in file_server.proto.
*
* It directly deserializes and serializes messages from network, minimizing
* memory use.
*
* For flexibility, this example is implemented using posix api.
* In a real embedded system you would typically use some other kind of
* a communication and filesystem layer.
*/
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <unistd.h>
#include <dirent.h>
#include <stdio.h>
#include <string.h>
#include <pb_encode.h>
#include <pb_decode.h>
#include "fileproto.pb.h"
#include "common.h"
bool listdir_callback(pb_ostream_t *stream, const pb_field_t *field, void * const *arg)
{
DIR *dir = (DIR*) *arg;
struct dirent *file;
FileInfo fileinfo;
while ((file = readdir(dir)) != NULL)
{
fileinfo.inode = file->d_ino;
strncpy(fileinfo.name, file->d_name, sizeof(fileinfo.name));
fileinfo.name[sizeof(fileinfo.name) - 1] = '\0';
if (!pb_encode_tag_for_field(stream, field))
return false;
if (!pb_encode_submessage(stream, FileInfo_fields, &fileinfo))
return false;
}
return true;
}
void handle_connection(int connfd)
{
ListFilesRequest request;
ListFilesResponse response;
pb_istream_t input = pb_istream_from_socket(connfd);
pb_ostream_t output = pb_ostream_from_socket(connfd);
DIR *directory;
if (!pb_decode(&input, ListFilesRequest_fields, &request))
{
printf("Decode failed: %s\n", PB_GET_ERROR(&input));
return;
}
directory = opendir(request.path);
printf("Listing directory: %s\n", request.path);
if (directory == NULL)
{
perror("opendir");
response.has_path_error = true;
response.path_error = true;
response.file.funcs.encode = NULL;
}
else
{
response.has_path_error = false;
response.file.funcs.encode = &listdir_callback;
response.file.arg = directory;
}
if (!pb_encode(&output, ListFilesResponse_fields, &response))
{
printf("Encoding failed.\n");
}
}
int main(int argc, char **argv)
{
int listenfd, connfd;
struct sockaddr_in servaddr;
int reuse = 1;
listenfd = socket(AF_INET, SOCK_STREAM, 0);
setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
servaddr.sin_port = htons(1234);
if (bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) != 0)
{
perror("bind");
return 1;
}
if (listen(listenfd, 5) != 0)
{
perror("listen");
return 1;
}
for(;;)
{
connfd = accept(listenfd, NULL, NULL);
if (connfd < 0)
{
perror("accept");
return 1;
}
printf("Got connection.\n");
handle_connection(connfd);
printf("Closing connection.\n");
close(connfd);
}
}

View File

@@ -0,0 +1,29 @@
CFLAGS = -Wall -Werror -g -O0
# Path to the nanopb root directory
NANOPB_DIR = ../..
DEPS = double_conversion.c $(NANOPB_DIR)/pb.h \
$(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_decode.h \
$(NANOPB_DIR)/pb_encode.c $(NANOPB_DIR)/pb_encode.h
CFLAGS += -I$(NANOPB_DIR)
all: run_tests
clean:
rm -f test_conversions encode_double decode_double doubleproto.pb.c doubleproto.pb.h
test_conversions: test_conversions.c double_conversion.c
$(CC) $(CFLAGS) -o $@ $^
%: %.c $(DEPS) doubleproto.pb.h doubleproto.pb.c
$(CC) $(CFLAGS) -o $@ $< double_conversion.c \
$(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_encode.c doubleproto.pb.c
doubleproto.pb.c doubleproto.pb.h: doubleproto.proto $(NANOPB_DIR)/generator/nanopb_generator.py
protoc -odoubleproto.pb $<
python $(NANOPB_DIR)/generator/nanopb_generator.py doubleproto.pb
run_tests: test_conversions encode_double decode_double
./test_conversions
./encode_double | ./decode_double

View File

@@ -0,0 +1,25 @@
Nanopb example "using_double_on_avr"
====================================
Some processors/compilers, such as AVR-GCC, do not support the double
datatype. Instead, they have sizeof(double) == 4. Because protocol
binary format uses the double encoding directly, this causes trouble
if the protocol in .proto requires double fields.
This directory contains a solution to this problem. It uses uint64_t
to store the raw wire values, because its size is correct on all
platforms. The file double_conversion.c provides functions that
convert these values to/from floats, without relying on compiler
support.
To use this method, you need to make some modifications to your code:
1) Change all 'double' fields into 'fixed64' in the .proto.
2) Whenever writing to a 'double' field, use float_to_double().
3) Whenever reading a 'double' field, use double_to_float().
The conversion routines are as accurate as the float datatype can
be. Furthermore, they should handle all special values (NaN, inf, denormalized
numbers) correctly. There are testcases in test_conversions.c.

View File

@@ -0,0 +1,33 @@
/* Decodes a double value into a float variable.
* Used to read double values with AVR code, which doesn't support double directly.
*/
#include <stdio.h>
#include <pb_decode.h>
#include "double_conversion.h"
#include "doubleproto.pb.h"
int main()
{
uint8_t buffer[32];
size_t count = fread(buffer, 1, sizeof(buffer), stdin);
pb_istream_t stream = pb_istream_from_buffer(buffer, count);
AVRDoubleMessage message;
pb_decode(&stream, AVRDoubleMessage_fields, &message);
float v1 = double_to_float(message.field1);
float v2 = double_to_float(message.field2);
printf("Values: %f %f\n", v1, v2);
if (v1 == 1234.5678f &&
v2 == 0.00001f)
{
return 0;
}
else
{
return 1;
}
}

View File

@@ -0,0 +1,123 @@
/* Conversion routines for platforms that do not support 'double' directly. */
#include "double_conversion.h"
#include <math.h>
typedef union {
float f;
uint32_t i;
} conversion_t;
/* Note: IEE 754 standard specifies float formats as follows:
* Single precision: sign, 8-bit exp, 23-bit frac.
* Double precision: sign, 11-bit exp, 52-bit frac.
*/
uint64_t float_to_double(float value)
{
conversion_t in;
in.f = value;
uint8_t sign;
int16_t exponent;
uint64_t mantissa;
/* Decompose input value */
sign = (in.i >> 31) & 1;
exponent = ((in.i >> 23) & 0xFF) - 127;
mantissa = in.i & 0x7FFFFF;
if (exponent == 128)
{
/* Special value (NaN etc.) */
exponent = 1024;
}
else if (exponent == -127)
{
if (!mantissa)
{
/* Zero */
exponent = -1023;
}
else
{
/* Denormalized */
mantissa <<= 1;
while (!(mantissa & 0x800000))
{
mantissa <<= 1;
exponent--;
}
mantissa &= 0x7FFFFF;
}
}
/* Combine fields */
mantissa <<= 29;
mantissa |= (uint64_t)(exponent + 1023) << 52;
mantissa |= (uint64_t)sign << 63;
return mantissa;
}
float double_to_float(uint64_t value)
{
uint8_t sign;
int16_t exponent;
uint32_t mantissa;
conversion_t out;
/* Decompose input value */
sign = (value >> 63) & 1;
exponent = ((value >> 52) & 0x7FF) - 1023;
mantissa = (value >> 28) & 0xFFFFFF; /* Highest 24 bits */
/* Figure if value is in range representable by floats. */
if (exponent == 1024)
{
/* Special value */
exponent = 128;
}
else if (exponent > 127)
{
/* Too large */
if (sign)
return -INFINITY;
else
return INFINITY;
}
else if (exponent < -150)
{
/* Too small */
if (sign)
return -0.0f;
else
return 0.0f;
}
else if (exponent < -126)
{
/* Denormalized */
mantissa |= 0x1000000;
mantissa >>= (-126 - exponent);
exponent = -127;
}
/* Round off mantissa */
mantissa = (mantissa + 1) >> 1;
/* Check if mantissa went over 2.0 */
if (mantissa & 0x800000)
{
exponent += 1;
mantissa &= 0x7FFFFF;
mantissa >>= 1;
}
/* Combine fields */
out.i = mantissa;
out.i |= (uint32_t)(exponent + 127) << 23;
out.i |= (uint32_t)sign << 31;
return out.f;
}

View File

@@ -0,0 +1,26 @@
/* AVR-GCC does not have real double datatype. Instead its double
* is equal to float, i.e. 32 bit value. If you need to communicate
* with other systems that use double in their .proto files, you
* need to do some conversion.
*
* These functions use bitwise operations to mangle floats into doubles
* and then store them in uint64_t datatype.
*/
#ifndef DOUBLE_CONVERSION
#define DOUBLE_CONVERSION
#include <stdint.h>
/* Convert native 4-byte float into a 8-byte double. */
extern uint64_t float_to_double(float value);
/* Convert 8-byte double into native 4-byte float.
* Values are rounded to nearest, 0.5 away from zero.
* Overflowing values are converted to Inf or -Inf.
*/
extern float double_to_float(uint64_t value);
#endif

View File

@@ -0,0 +1,13 @@
// A message containing doubles, as used by other applications.
message DoubleMessage {
required double field1 = 1;
required double field2 = 2;
}
// A message containing doubles, but redefined using uint64_t.
// For use in AVR code.
message AVRDoubleMessage {
required fixed64 field1 = 1;
required fixed64 field2 = 2;
}

View File

@@ -0,0 +1,25 @@
/* Encodes a float value into a double on the wire.
* Used to emit doubles from AVR code, which doesn't support double directly.
*/
#include <stdio.h>
#include <pb_encode.h>
#include "double_conversion.h"
#include "doubleproto.pb.h"
int main()
{
AVRDoubleMessage message = {
float_to_double(1234.5678f),
float_to_double(0.00001f)
};
uint8_t buffer[32];
pb_ostream_t stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
pb_encode(&stream, AVRDoubleMessage_fields, &message);
fwrite(buffer, 1, stream.bytes_written, stdout);
return 0;
}

View File

@@ -0,0 +1,56 @@
#include "double_conversion.h"
#include <math.h>
#include <stdio.h>
static const double testvalues[] = {
0.0, -0.0, 0.1, -0.1,
M_PI, -M_PI, 123456.789, -123456.789,
INFINITY, -INFINITY, NAN, INFINITY - INFINITY,
1e38, -1e38, 1e39, -1e39,
1e-38, -1e-38, 1e-39, -1e-39,
3.14159e-37,-3.14159e-37, 3.14159e-43, -3.14159e-43,
1e-60, -1e-60, 1e-45, -1e-45,
0.99999999999999, -0.99999999999999, 127.999999999999, -127.999999999999
};
#define TESTVALUES_COUNT (sizeof(testvalues)/sizeof(testvalues[0]))
int main()
{
int status = 0;
int i;
for (i = 0; i < TESTVALUES_COUNT; i++)
{
double orig = testvalues[i];
float expected_float = (float)orig;
double expected_double = (double)expected_float;
float got_float = double_to_float(*(uint64_t*)&orig);
uint64_t got_double = float_to_double(got_float);
uint32_t e1 = *(uint32_t*)&expected_float;
uint32_t g1 = *(uint32_t*)&got_float;
uint64_t e2 = *(uint64_t*)&expected_double;
uint64_t g2 = got_double;
if (g1 != e1)
{
printf("%3d double_to_float fail: %08x != %08x\n", i, g1, e1);
status = 1;
}
if (g2 != e2)
{
printf("%3d float_to_double fail: %016llx != %016llx\n", i,
(unsigned long long)g2,
(unsigned long long)e2);
status = 1;
}
}
return status;
}

View File

@@ -0,0 +1,22 @@
CFLAGS = -ansi -Wall -Werror -g -O0
# Path to the nanopb root folder
NANOPB_DIR = ../..
DEPS = $(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_decode.h \
$(NANOPB_DIR)/pb_encode.c $(NANOPB_DIR)/pb_encode.h $(NANOPB_DIR)/pb.h
CFLAGS += -I$(NANOPB_DIR)
all: encode decode
./encode 1 | ./decode
./encode 2 | ./decode
./encode 3 | ./decode
clean:
rm -f encode unionproto.pb.h unionproto.pb.c
%: %.c $(DEPS) unionproto.pb.h unionproto.pb.c
$(CC) $(CFLAGS) -o $@ $< $(NANOPB_DIR)/pb_decode.c $(NANOPB_DIR)/pb_encode.c unionproto.pb.c
unionproto.pb.h unionproto.pb.c: unionproto.proto $(NANOPB_DIR)/generator/nanopb_generator.py
protoc -ounionproto.pb $<
python $(NANOPB_DIR)/generator/nanopb_generator.py unionproto.pb

View File

@@ -0,0 +1,52 @@
Nanopb example "using_union_messages"
=====================================
Union messages is a common technique in Google Protocol Buffers used to
represent a group of messages, only one of which is passed at a time.
It is described in Google's documentation:
https://developers.google.com/protocol-buffers/docs/techniques#union
This directory contains an example on how to encode and decode union messages
with minimal memory usage. Usually, nanopb would allocate space to store
all of the possible messages at the same time, even though at most one of
them will be used at a time.
By using some of the lower level nanopb APIs, we can manually generate the
top level message, so that we only need to allocate the one submessage that
we actually want. Similarly when decoding, we can manually read the tag of
the top level message, and only then allocate the memory for the submessage
after we already know its type.
Example usage
-------------
Type `make` to run the example. It will build it and run commands like
following:
./encode 1 | ./decode
Got MsgType1: 42
./encode 2 | ./decode
Got MsgType2: true
./encode 3 | ./decode
Got MsgType3: 3 1415
This simply demonstrates that the "decode" program has correctly identified
the type of the received message, and managed to decode it.
Details of implementation
-------------------------
unionproto.proto contains the protocol used in the example. It consists of
three messages: MsgType1, MsgType2 and MsgType3, which are collected together
into UnionMessage.
encode.c takes one command line argument, which should be a number 1-3. It
then fills in and encodes the corresponding message, and writes it to stdout.
decode.c reads a UnionMessage from stdin. Then it calls the function
decode_unionmessage_type() to determine the type of the message. After that,
the corresponding message is decoded and the contents of it printed to the
screen.

View File

@@ -0,0 +1,96 @@
/* This program reads a message from stdin, detects its type and decodes it.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pb_decode.h>
#include "unionproto.pb.h"
/* This function reads manually the first tag from the stream and finds the
* corresponding message type. It doesn't yet decode the actual message.
*
* Returns a pointer to the MsgType_fields array, as an identifier for the
* message type. Returns null if the tag is of unknown type or an error occurs.
*/
const pb_field_t* decode_unionmessage_type(pb_istream_t *stream)
{
pb_wire_type_t wire_type;
uint32_t tag;
bool eof;
while (pb_decode_tag(stream, &wire_type, &tag, &eof))
{
if (wire_type == PB_WT_STRING)
{
const pb_field_t *field;
for (field = UnionMessage_fields; field->tag != 0; field++)
{
if (field->tag == tag && (field->type & PB_LTYPE_SUBMESSAGE))
{
/* Found our field. */
return field->ptr;
}
}
}
/* Wasn't our field.. */
pb_skip_field(stream, wire_type);
}
return NULL;
}
bool decode_unionmessage_contents(pb_istream_t *stream, const pb_field_t fields[], void *dest_struct)
{
pb_istream_t substream;
bool status;
if (!pb_make_string_substream(stream, &substream))
return false;
status = pb_decode(&substream, fields, dest_struct);
pb_close_string_substream(stream, &substream);
return status;
}
int main()
{
/* Read the data into buffer */
uint8_t buffer[512];
size_t count = fread(buffer, 1, sizeof(buffer), stdin);
pb_istream_t stream = pb_istream_from_buffer(buffer, count);
const pb_field_t *type = decode_unionmessage_type(&stream);
bool status = false;
if (type == MsgType1_fields)
{
MsgType1 msg = {};
status = decode_unionmessage_contents(&stream, MsgType1_fields, &msg);
printf("Got MsgType1: %d\n", msg.value);
}
else if (type == MsgType2_fields)
{
MsgType2 msg = {};
status = decode_unionmessage_contents(&stream, MsgType2_fields, &msg);
printf("Got MsgType2: %s\n", msg.value ? "true" : "false");
}
else if (type == MsgType3_fields)
{
MsgType3 msg = {};
status = decode_unionmessage_contents(&stream, MsgType3_fields, &msg);
printf("Got MsgType3: %d %d\n", msg.value1, msg.value2);
}
if (!status)
{
printf("Decode failed: %s\n", PB_GET_ERROR(&stream));
return 1;
}
return 0;
}

View File

@@ -0,0 +1,85 @@
/* This program takes a command line argument and encodes a message in
* one of MsgType1, MsgType2 or MsgType3.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pb_encode.h>
#include "unionproto.pb.h"
/* This function is the core of the union encoding process. It handles
* the top-level pb_field_t array manually, in order to encode a correct
* field tag before the message. The pointer to MsgType_fields array is
* used as an unique identifier for the message type.
*/
bool encode_unionmessage(pb_ostream_t *stream, const pb_field_t messagetype[], const void *message)
{
const pb_field_t *field;
for (field = UnionMessage_fields; field->tag != 0; field++)
{
if (field->ptr == messagetype)
{
/* This is our field, encode the message using it. */
if (!pb_encode_tag_for_field(stream, field))
return false;
return pb_encode_submessage(stream, messagetype, message);
}
}
/* Didn't find the field for messagetype */
return false;
}
int main(int argc, char **argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s (1|2|3)\n", argv[0]);
return 1;
}
uint8_t buffer[512];
pb_ostream_t stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
bool status = false;
int msgtype = atoi(argv[1]);
if (msgtype == 1)
{
/* Send message of type 1 */
MsgType1 msg = {42};
status = encode_unionmessage(&stream, MsgType1_fields, &msg);
}
else if (msgtype == 2)
{
/* Send message of type 2 */
MsgType2 msg = {true};
status = encode_unionmessage(&stream, MsgType2_fields, &msg);
}
else if (msgtype == 3)
{
/* Send message of type 3 */
MsgType3 msg = {3, 1415};
status = encode_unionmessage(&stream, MsgType3_fields, &msg);
}
else
{
fprintf(stderr, "Unknown message type: %d\n", msgtype);
return 2;
}
if (!status)
{
fprintf(stderr, "Encoding failed!\n");
return 3;
}
else
{
fwrite(buffer, 1, stream.bytes_written, stdout);
return 0; /* Success */
}
}

View File

@@ -0,0 +1,30 @@
// This is an example of how to handle 'union' style messages
// with nanopb, without allocating memory for all the message types.
//
// There is no official type in Protocol Buffers for describing unions,
// but they are commonly implemented by filling out exactly one of
// several optional fields.
message MsgType1
{
required int32 value = 1;
}
message MsgType2
{
required bool value = 1;
}
message MsgType3
{
required int32 value1 = 1;
required int32 value2 = 2;
}
message UnionMessage
{
optional MsgType1 msg1 = 1;
optional MsgType2 msg2 = 2;
optional MsgType3 msg3 = 3;
}