1 Commits

Author SHA1 Message Date
Bram Veenboer
d7a7af5de9 TODO: first changes to add expf 2025-09-01 15:52:04 +02:00
16 changed files with 141 additions and 121 deletions

View File

@@ -7,5 +7,4 @@ repos:
rev: v0.6.13 rev: v0.6.13
hooks: hooks:
- id: cmake-format - id: cmake-format
- id: cmake-lint - id: cmake-lint
args: [--disabled-codes=C0301]

View File

@@ -2,14 +2,13 @@
#include <chrono> #include <chrono>
#include <cmath> #include <cmath>
#include <stdexcept>
#include <string> #include <string>
#include <vector> #include <vector>
#include <benchmark/benchmark.h> #include <benchmark/benchmark.h>
void init_x(float *x, size_t n) { void init_x(std::vector<float> &x) {
for (size_t i = 0; i < n; ++i) { for (size_t i = 0; i < x.size(); ++i) {
x[i] = (i % 360) * 0.0174533f; // degrees to radians x[i] = (i % 360) * 0.0174533f; // degrees to radians
} }
} }
@@ -17,31 +16,24 @@ void init_x(float *x, size_t n) {
template <typename Backend> template <typename Backend>
static void benchmark_sinf(benchmark::State &state) { static void benchmark_sinf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), s(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *s =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_sinf(N, x, s); backend.compute_sinf(N, x.data(), s.data());
benchmark::DoNotOptimize(s); benchmark::DoNotOptimize(s);
} }
backend.free_memory(x);
backend.free_memory(s);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }
@@ -49,35 +41,24 @@ static void benchmark_sinf(benchmark::State &state) {
template <typename Backend> template <typename Backend>
static void benchmark_cosf(benchmark::State &state) { static void benchmark_cosf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), c(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *c =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
if (!x || !c) {
throw std::runtime_error("Buffer allocation failed");
}
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_cosf(N, x, c); backend.compute_cosf(N, x.data(), c.data());
benchmark::DoNotOptimize(c); benchmark::DoNotOptimize(c);
} }
backend.free_memory(x);
backend.free_memory(c);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }
@@ -85,38 +66,25 @@ static void benchmark_cosf(benchmark::State &state) {
template <typename Backend> template <typename Backend>
static void benchmark_sincosf(benchmark::State &state) { static void benchmark_sincosf(benchmark::State &state) {
const size_t N = static_cast<size_t>(state.range(0)); const size_t N = static_cast<size_t>(state.range(0));
std::vector<float> x(N), s(N), c(N);
init_x(x);
Backend backend; Backend backend;
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
backend.init(N); backend.init(N);
float *x =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *s =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
float *c =
reinterpret_cast<float *>(backend.allocate_memory(N * sizeof(float)));
if (!x || !s || !c) {
throw std::runtime_error("Buffer allocation failed");
}
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
state.counters["init_ms"] = state.counters["init_ms"] =
std::chrono::duration_cast<std::chrono::microseconds>(end - start) std::chrono::duration_cast<std::chrono::microseconds>(end - start)
.count() / .count() /
1.e3; 1.e3;
init_x(x, N);
for (auto _ : state) { for (auto _ : state) {
backend.compute_sincosf(N, x, s, c); backend.compute_sincosf(N, x.data(), s.data(), c.data());
benchmark::DoNotOptimize(s); benchmark::DoNotOptimize(s);
benchmark::DoNotOptimize(c); benchmark::DoNotOptimize(c);
} }
backend.free_memory(x);
backend.free_memory(s);
backend.free_memory(c);
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) *
static_cast<int64_t>(N)); static_cast<int64_t>(N));
} }

View File

@@ -11,12 +11,12 @@ public:
GPUBackend(); GPUBackend();
~GPUBackend() override; ~GPUBackend() override;
void *allocate_memory(size_t bytes) const override; void init(size_t n = 0) override;
void free_memory(void *ptr) const override;
void compute_sinf(size_t n, const float *x, float *s) const override; void compute_sinf(size_t n, const float *x, float *s) const override;
void compute_cosf(size_t n, const float *x, float *c) const override; void compute_cosf(size_t n, const float *x, float *c) const override;
void compute_sincosf(size_t n, const float *x, float *s, void compute_sincosf(size_t n, const float *x, float *s,
float *c) const override; float *c) const override;
void compute_expf(size_t n, const float *x, float *e) const override;
private: private:
struct Impl; struct Impl;

View File

@@ -1,8 +1,6 @@
#pragma once #pragma once
#include <cstddef> #include <cstddef>
#include <cstdint>
#include <cstdlib>
// Base interface for all math backends // Base interface for all math backends
class Backend { class Backend {
@@ -12,12 +10,6 @@ public:
// Optional initialization // Optional initialization
virtual void init(size_t n = 0) {} virtual void init(size_t n = 0) {}
virtual void *allocate_memory(size_t bytes) const {
return static_cast<void *>(new uint8_t[bytes]);
};
virtual void free_memory(void *ptr) const { std::free(ptr); };
// Compute sine for n elements // Compute sine for n elements
virtual void compute_sinf(size_t n, const float *x, float *s) const = 0; virtual void compute_sinf(size_t n, const float *x, float *s) const = 0;
@@ -27,4 +19,7 @@ public:
// Compute sine and cosine for n elements // Compute sine and cosine for n elements
virtual void compute_sincosf(size_t n, const float *x, float *s, virtual void compute_sincosf(size_t n, const float *x, float *s,
float *c) const = 0; float *c) const = 0;
// Compute exponent for n elements
virtual void compute_expf(size_t n, const float *x, float *e) const = 0;
}; };

View File

@@ -10,4 +10,6 @@ public:
void compute_sincosf(size_t n, const float *x, float *s, void compute_sincosf(size_t n, const float *x, float *s,
float *c) const override; float *c) const override;
void compute_expf(size_t n, const float *x, float *e) const override;
}; };

View File

@@ -10,4 +10,6 @@ public:
void compute_sincosf(size_t n, const float *x, float *s, void compute_sincosf(size_t n, const float *x, float *s,
float *c) const override; float *c) const override;
void compute_expf(size_t n, const float *x, float *e) const override;
}; };

View File

@@ -8,16 +8,5 @@ if(NOT pybind11_FOUND)
FetchContent_MakeAvailable(pybind11) FetchContent_MakeAvailable(pybind11)
endif() endif()
# Needed to set ${Python_VERSION_MAJOR} and ${Python_VERSION_MINOR}
find_package(Python REQUIRED)
pybind11_add_module(pytrigdx bindings.cpp) pybind11_add_module(pytrigdx bindings.cpp)
target_link_libraries(pytrigdx PRIVATE trigdx) target_link_libraries(pytrigdx PRIVATE trigdx)
set_target_properties(pytrigdx PROPERTIES OUTPUT_NAME "trigdx")
set(PYTHON_SITE_PACKAGES
"${CMAKE_INSTALL_LIBDIR}/python${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}/site-packages/trigdx"
)
install(TARGETS pytrigdx DESTINATION ${PYTHON_SITE_PACKAGES})
install(FILES __init__.py DESTINATION ${PYTHON_SITE_PACKAGES})

View File

@@ -1,16 +0,0 @@
from .trigdx import Reference, Lookup16K, Lookup32K, LookupAVX16K, LookupAVX32K
try:
from .trigdx import MKL
except ImportError:
pass
try:
from .trigdx import GPU
except ImportError:
pass
try:
from .trigdx import LookupXSIMD16K, LookupXSIMD32K
except ImportError:
pass

View File

@@ -72,9 +72,7 @@ void bind_backend(py::module &m, const char *name) {
.def("compute_sincosf", &compute_sincos<float>); .def("compute_sincosf", &compute_sincos<float>);
} }
PYBIND11_MODULE(trigdx, m) { PYBIND11_MODULE(pytrigdx, m) {
m.doc() = "TrigDx python bindings";
py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend") py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend")
.def("init", &Backend::init); .def("init", &Backend::init);
@@ -93,4 +91,4 @@ PYBIND11_MODULE(trigdx, m) {
bind_backend<LookupXSIMDBackend<16384>>(m, "LookupXSIMD16K"); bind_backend<LookupXSIMDBackend<16384>>(m, "LookupXSIMD16K");
bind_backend<LookupXSIMDBackend<32768>>(m, "LookupXSIMD32K"); bind_backend<LookupXSIMDBackend<32768>>(m, "LookupXSIMD32K");
#endif #endif
} }

View File

@@ -10,63 +10,98 @@
struct GPUBackend::Impl { struct GPUBackend::Impl {
void *allocate_memory(size_t bytes) const { ~Impl() {
void *ptr; if (h_x) {
cudaMallocHost(&ptr, bytes); cudaFreeHost(h_x);
return ptr; }
if (h_s) {
cudaFreeHost(h_s);
}
if (h_c) {
cudaFreeHost(h_c);
}
if (h_e) {
cudaFreeHost(h_e);
}
if (d_x) {
cudaFree(d_x);
}
if (d_s) {
cudaFree(d_s);
}
if (d_c) {
cudaFree(d_c);
}
if (d_e) {
cudaFree(d_e);
}
} }
void free_memory(void *ptr) const { cudaFreeHost(ptr); } void init(size_t n) {
const size_t bytes = n * sizeof(float);
cudaMallocHost(&h_x, bytes);
cudaMallocHost(&h_s, bytes);
cudaMallocHost(&h_c, bytes);
cudaMallocHost(&h_e, bytes);
cudaMalloc(&d_x, bytes);
cudaMalloc(&d_s, bytes);
cudaMalloc(&d_c, bytes);
cudaMalloc(&d_e, bytes);
}
void compute_sinf(size_t n, const float *x, float *s) const { void compute_sinf(size_t n, const float *x, float *s) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_s; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_s, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_sinf_kernel(d_x, d_s, n); launch_sinf_kernel(d_x, d_s, n);
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(s, h_s, bytes);
cudaFree(d_s);
} }
void compute_cosf(size_t n, const float *x, float *c) const { void compute_cosf(size_t n, const float *x, float *c) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_c; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_c, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_cosf_kernel(d_x, d_c, n); launch_cosf_kernel(d_x, d_c, n);
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(c, h_c, bytes);
cudaFree(d_c);
} }
void compute_sincosf(size_t n, const float *x, float *s, float *c) const { void compute_sincosf(size_t n, const float *x, float *s, float *c) const {
const size_t bytes = n * sizeof(float); const size_t bytes = n * sizeof(float);
float *d_x, *d_s, *d_c; std::memcpy(h_x, x, bytes);
cudaMalloc(&d_x, bytes); cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
cudaMalloc(&d_s, bytes);
cudaMalloc(&d_c, bytes);
cudaMemcpy(d_x, x, bytes, cudaMemcpyHostToDevice);
launch_sincosf_kernel(d_x, d_s, d_c, n); launch_sincosf_kernel(d_x, d_s, d_c, n);
cudaMemcpy(s, d_s, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_s, d_s, bytes, cudaMemcpyDeviceToHost);
cudaMemcpy(c, d_c, bytes, cudaMemcpyDeviceToHost); cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);
cudaFree(d_x); std::memcpy(s, h_s, bytes);
cudaFree(d_s); std::memcpy(c, h_c, bytes);
cudaFree(d_c);
} }
void compute_expf(size_t n, const float *x, float *e) const {
const size_t bytes = n * sizeof(float);
std::memcpy(h_x, x, bytes);
cudaMemcpy(d_x, h_x, bytes, cudaMemcpyHostToDevice);
launch_expf_kernel(d_x, d_e, n);
cudaMemcpy(h_e, d_e, bytes, cudaMemcpyDeviceToHost);
std::memcpy(e, h_e, bytes);
}
float *h_x = nullptr;
float *h_s = nullptr;
float *h_c = nullptr;
float *h_e = nullptr;
float *d_x = nullptr;
float *d_s = nullptr;
float *d_c = nullptr;
float *d_e = nullptr;
}; };
GPUBackend::GPUBackend() : impl(std::make_unique<Impl>()) {} GPUBackend::GPUBackend() : impl(std::make_unique<Impl>()) {}
GPUBackend::~GPUBackend() = default; GPUBackend::~GPUBackend() = default;
void *GPUBackend::allocate_memory(size_t bytes) const { void GPUBackend::init(size_t n) { impl->init(n); }
return impl->allocate_memory(bytes);
}
void GPUBackend::free_memory(void *ptr) const { impl->free_memory(ptr); }
void GPUBackend::compute_sinf(size_t n, const float *x, float *s) const { void GPUBackend::compute_sinf(size_t n, const float *x, float *s) const {
impl->compute_sinf(n, x, s); impl->compute_sinf(n, x, s);
@@ -79,4 +114,8 @@ void GPUBackend::compute_cosf(size_t n, const float *x, float *c) const {
void GPUBackend::compute_sincosf(size_t n, const float *x, float *s, void GPUBackend::compute_sincosf(size_t n, const float *x, float *s,
float *c) const { float *c) const {
impl->compute_sincosf(n, x, s, c); impl->compute_sincosf(n, x, s, c);
} }
void GPUBackend::compute_expf(size_t n, const float *x, float *e) const {
impl->compute_expf(n, x, e);
}

View File

@@ -31,6 +31,15 @@ __global__ void kernel_sincosf(const float *__restrict__ x,
} }
} }
__global__ void kernel_expf(const float *__restrict__ x, float *__restrict__ e,
size_t n) {
size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
// e[idx] = __expf(x[idx]);
e[idx] = expf(x[idx]);
}
}
namespace { namespace {
inline dim3 make_grid(size_t n, size_t threadsPerBlock = 256) { inline dim3 make_grid(size_t n, size_t threadsPerBlock = 256) {
return dim3((n + threadsPerBlock - 1) / threadsPerBlock); return dim3((n + threadsPerBlock - 1) / threadsPerBlock);
@@ -54,3 +63,9 @@ void launch_sincosf_kernel(const float *d_x, float *d_s, float *d_c, size_t n) {
dim3 grid = make_grid(n, blocks.x); dim3 grid = make_grid(n, blocks.x);
kernel_sincosf<<<grid, blocks>>>(d_x, d_s, d_c, n); kernel_sincosf<<<grid, blocks>>>(d_x, d_s, d_c, n);
} }
void launch_expf_kernel(const float *d_x, float *d_e, size_t n) {
dim3 blocks(256);
dim3 grid = make_grid(n, blocks.x);
kernel_expf<<<grid, blocks>>>(d_x, d_e, n);
}

View File

@@ -6,3 +6,4 @@ void launch_sinf_kernel(const float *d_x, float *d_s, size_t n);
void launch_cosf_kernel(const float *d_x, float *d_c, size_t n); void launch_cosf_kernel(const float *d_x, float *d_c, size_t n);
void launch_sincosf_kernel(const float *d_x, float *d_s, float *d_c, void launch_sincosf_kernel(const float *d_x, float *d_s, float *d_c,
std::size_t n); std::size_t n);
void launch_expf_kernel(const float *d_x, float *d_e, size_t n);

View File

@@ -14,3 +14,7 @@ void MKLBackend::compute_sincosf(size_t n, const float *x, float *s,
float *c) const { float *c) const {
vmsSinCos(static_cast<MKL_INT>(n), x, s, c, VML_HA); vmsSinCos(static_cast<MKL_INT>(n), x, s, c, VML_HA);
} }
void MKLBackend::compute_expf(size_t n, const float *x, float *e) const {
vmsExp(static_cast<MKL_INT>(n), x, e, VML_HA);
}

View File

@@ -21,3 +21,9 @@ void ReferenceBackend::compute_sincosf(size_t n, const float *x, float *s,
c[i] = cosf(x[i]); c[i] = cosf(x[i]);
} }
} }
void ReferenceBackend::compute_expf(size_t n, const float *x, float *e) const {
for (size_t i = 0; i < n; ++i) {
e[i] = expf(x[i]);
}
}

View File

@@ -8,3 +8,5 @@ TEST_CASE("sinf") { test_sinf<MKLBackend>(1e-6f); }
TEST_CASE("cosf") { test_cosf<MKLBackend>(1e-6f); } TEST_CASE("cosf") { test_cosf<MKLBackend>(1e-6f); }
TEST_CASE("sincosf") { test_sincosf<MKLBackend>(1e-6f); } TEST_CASE("sincosf") { test_sincosf<MKLBackend>(1e-6f); }
TEST_CASE("expf") { test_expf<MKLBackend>(1e-6f); }

View File

@@ -63,3 +63,19 @@ template <typename Backend> inline void test_sincosf(float tol) {
REQUIRE_THAT(c[i], Catch::Matchers::WithinAbs(c_ref[i], tol)); REQUIRE_THAT(c[i], Catch::Matchers::WithinAbs(c_ref[i], tol));
} }
} }
template <typename Backend> inline void test_expf(float tol) {
std::vector<float> x(N), e_ref(N), e(N);
init_x(x);
ReferenceBackend ref;
Backend backend;
backend.init(N);
ref.compute_expf(N, x.data(), e_ref.data());
backend.compute_expf(N, x.data(), e.data());
for (size_t i = 0; i < N; ++i) {
REQUIRE_THAT(e[i], Catch::Matchers::WithinAbs(e_ref[i], tol));
}
}