Compare commits
4 Commits
fix-format
...
v0.1.0
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5f00c5d304 | ||
|
|
f85e67e669 | ||
|
|
76998a137a | ||
|
|
500d35070e |
@@ -12,6 +12,11 @@ option(TRIGDX_BUILD_TESTS "Build tests" ON)
|
||||
option(TRIGDX_BUILD_BENCHMARKS "Build tests" ON)
|
||||
option(TRIGDX_BUILD_PYTHON "Build Python interface" ON)
|
||||
|
||||
# Add compiler flags
|
||||
set(CMAKE_CXX_FLAGS
|
||||
"${CMAKE_CXX_FLAGS} -Wall -Wnon-virtual-dtor -Wduplicated-branches -Wvla -Wpointer-arith -Wextra -Wno-unused-parameter"
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
configure_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/trigdx_config.hpp.in
|
||||
|
||||
54
README.md
Normal file
54
README.md
Normal file
@@ -0,0 +1,54 @@
|
||||
# TrigDx
|
||||
|
||||
High‑performance C++ library offering multiple implementations of transcendental trigonometric functions (e.g., sin, cos, tan and their variants), designed for numerical, signal‑processing, and real‑time systems where trading a small loss of accuracy for significantly higher throughput on modern CPUs (scalar and SIMD) and NVIDIA GPUs is acceptable.
|
||||
|
||||
## Why TrigDx?
|
||||
Many applications use the standard library implementations, which prioritise correctness but are not always optimal for throughput on vectorized or GPU hardware. TrigDx gives you multiple implementations so you can:
|
||||
|
||||
- Replace `std::sin` / `std::cos` calls with faster approximations when a small, bounded reduction in accuracy is acceptable.
|
||||
- Use SIMD/vectorized implementations and compact lookup tables for high throughput lookups.
|
||||
- Run massively parallel kernels that take advantage of a GPU's _Special Function Units_ (SFUs).
|
||||
|
||||
## Requirements
|
||||
- A C++ compiler with at least C++17 support (GCC, Clang)
|
||||
- CMake 3.15+
|
||||
- Optional: NVIDIA CUDA Toolkit 11+ to build GPU kernels
|
||||
- Optional: GoogleTest (for unit tests) and GoogleBenchmark (for microbenchmarks)
|
||||
|
||||
## Building
|
||||
```bash
|
||||
git clone https://github.com/astron-rd/TrigDx.git
|
||||
cd TrigDx
|
||||
mkdir build && cd build
|
||||
|
||||
# CPU-only:
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_XSIMD=ON ..
|
||||
cmake --build . -j
|
||||
|
||||
# Enable CUDA (if available):
|
||||
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_GPU=ON ..
|
||||
cmake --build . -j
|
||||
|
||||
# Run tests:
|
||||
ctest --output-on-failure -j
|
||||
```
|
||||
|
||||
Common CMake options:
|
||||
- `TRIGDX_USE_GPU=ON/OFF` — build GPU support.
|
||||
- `TRIGDX_BUILD_TESTS=ON/OFF` — build tests.
|
||||
- `TRIGDX_BUILD_BENCHMARKS=ON/OFF` — build benchmarks.
|
||||
- `TRIGDX_BUILD_PYTHON` — build Python interface.
|
||||
|
||||
## Contributing
|
||||
- Fork → create a feature branch → open a PR.
|
||||
- Include unit tests for correctness‑sensitive changes and benchmark results for performance changes.
|
||||
- Follow project style (clang‑format) and run tests locally before submitting.
|
||||
|
||||
## Reporting issues
|
||||
When opening an issue for incorrect results or performance regressions, please include:
|
||||
- Platform and CPU/GPU model.
|
||||
- Compiler and version with exact compile flags.
|
||||
- Small reproducer (input data and the TrigDx implementation used).
|
||||
|
||||
## License
|
||||
See the LICENSE file in the repository for licensing details.
|
||||
@@ -20,8 +20,8 @@ template <std::size_t NR_SAMPLES> struct lookup_table {
|
||||
cos_values[i] = cosf(i * PI_FRAC);
|
||||
}
|
||||
}
|
||||
std::array<float, NR_SAMPLES> cos_values;
|
||||
std::array<float, NR_SAMPLES> sin_values;
|
||||
std::array<float, NR_SAMPLES> cos_values;
|
||||
};
|
||||
|
||||
template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
@@ -33,7 +33,6 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
@@ -42,7 +41,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -60,7 +59,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
|
||||
|
||||
@@ -98,7 +97,6 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
@@ -107,7 +105,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -120,7 +118,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
|
||||
const b_type sindx = xsimd::sub(dx, t3);
|
||||
@@ -160,7 +158,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
|
||||
constexpr uint_fast32_t VL = b_type::size;
|
||||
const uint_fast32_t VS = n - n % VL;
|
||||
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
|
||||
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
|
||||
const m_type mask = m_type::broadcast(lookup_table_.MASK);
|
||||
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
|
||||
@@ -170,7 +167,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
|
||||
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
|
||||
|
||||
const m_type quarter_pi = m_type::broadcast(Q_PI);
|
||||
uint_fast32_t i;
|
||||
for (i = 0; i < VS; i += VL) {
|
||||
const b_type vx = b_type::load(a + i, Tag());
|
||||
@@ -183,7 +179,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
|
||||
const b_type dx4 = xsimd::mul(dx2, dx);
|
||||
const b_type t2 = xsimd::mul(dx2, term2);
|
||||
const b_type t3 = xsimd::mul(dx3, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term3);
|
||||
const b_type t4 = xsimd::mul(dx4, term4);
|
||||
|
||||
idx = xsimd::bitwise_and(idx, mask);
|
||||
b_type sinv = b_type::gather(lookup_table_.sin_values.data(), idx);
|
||||
|
||||
Reference in New Issue
Block a user