7 Commits

Author SHA1 Message Date
Dantali0n
58bc640d6d 32: Set AVX and AVX2 flags using CMake checks (#34)
* 32: Set mavx and mavx2 based on CMake checks
* 32: Update flags for Intel compiler
* Fix: AVX2 instead of AVX__2

Co-authored-by: Bram Veenboer <bram.veenboer@gmail.com>
Co-authored-by: lukken <lukken@astron.nl>
2025-10-29 09:18:43 +01:00
Wiebe van Breukelen
5f00c5d304 Add README.md (#38)
* Add README.md

* Improve README description of TrigDx library

* Apply suggestion from @mickveldhuis

Co-authored-by: Mick Veldhuis <mickveldhuis@hotmail.nl>

* Apply suggestion from @mickveldhuis

Co-authored-by: Mick Veldhuis <mickveldhuis@hotmail.nl>

* Apply suggestion from @mickveldhuis

Co-authored-by: Mick Veldhuis <mickveldhuis@hotmail.nl>

---------

Co-authored-by: Mick Veldhuis <mickveldhuis@hotmail.nl>
2025-10-22 16:55:37 +02:00
Wiebe van Breukelen
f85e67e669 Fix compiler warnings (#37) 2025-10-22 16:48:26 +02:00
mmancini-skao
76998a137a Fix error in Taylor expansion (#36)
Replaced term3 with term4 in calculations for t4.
2025-10-20 17:09:35 +02:00
Bram Veenboer
500d35070e Fix formatting (#35)
* Run pre-commit

* Skip line-length check in cmake-lint
2025-10-10 09:19:18 +02:00
Dantali0n
bfe752433f Fixes #30, Add CMake steps to install python bindings (#31) 2025-09-17 20:03:28 +02:00
Bram Veenboer
8fe8314905 Update GPU backend (#29)
* Update GPU memory management
* Add allocate_memory and free_memory
2025-09-03 09:16:28 +02:00
9 changed files with 126 additions and 13 deletions

View File

@@ -7,4 +7,5 @@ repos:
rev: v0.6.13
hooks:
- id: cmake-format
- id: cmake-lint
- id: cmake-lint
args: [--disabled-codes=C0301]

View File

@@ -12,6 +12,11 @@ option(TRIGDX_BUILD_TESTS "Build tests" ON)
option(TRIGDX_BUILD_BENCHMARKS "Build tests" ON)
option(TRIGDX_BUILD_PYTHON "Build Python interface" ON)
# Add compiler flags
set(CMAKE_CXX_FLAGS
"${CMAKE_CXX_FLAGS} -Wall -Wnon-virtual-dtor -Wduplicated-branches -Wvla -Wpointer-arith -Wextra -Wno-unused-parameter"
)
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
configure_file(
${CMAKE_CURRENT_SOURCE_DIR}/cmake/trigdx_config.hpp.in

54
README.md Normal file
View File

@@ -0,0 +1,54 @@
# TrigDx
Highperformance C++ library offering multiple implementations of transcendental trigonometric functions (e.g., sin, cos, tan and their variants), designed for numerical, signalprocessing, and realtime systems where trading a small loss of accuracy for significantly higher throughput on modern CPUs (scalar and SIMD) and NVIDIA GPUs is acceptable.
## Why TrigDx?
Many applications use the standard library implementations, which prioritise correctness but are not always optimal for throughput on vectorized or GPU hardware. TrigDx gives you multiple implementations so you can:
- Replace `std::sin` / `std::cos` calls with faster approximations when a small, bounded reduction in accuracy is acceptable.
- Use SIMD/vectorized implementations and compact lookup tables for high throughput lookups.
- Run massively parallel kernels that take advantage of a GPU's _Special Function Units_ (SFUs).
## Requirements
- A C++ compiler with at least C++17 support (GCC, Clang)
- CMake 3.15+
- Optional: NVIDIA CUDA Toolkit 11+ to build GPU kernels
- Optional: GoogleTest (for unit tests) and GoogleBenchmark (for microbenchmarks)
## Building
```bash
git clone https://github.com/astron-rd/TrigDx.git
cd TrigDx
mkdir build && cd build
# CPU-only:
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_XSIMD=ON ..
cmake --build . -j
# Enable CUDA (if available):
cmake -DCMAKE_BUILD_TYPE=Release -DTRIGDX_USE_GPU=ON ..
cmake --build . -j
# Run tests:
ctest --output-on-failure -j
```
Common CMake options:
- `TRIGDX_USE_GPU=ON/OFF` — build GPU support.
- `TRIGDX_BUILD_TESTS=ON/OFF` — build tests.
- `TRIGDX_BUILD_BENCHMARKS=ON/OFF` — build benchmarks.
- `TRIGDX_BUILD_PYTHON` — build Python interface.
## Contributing
- Fork → create a feature branch → open a PR.
- Include unit tests for correctnesssensitive changes and benchmark results for performance changes.
- Follow project style (clangformat) and run tests locally before submitting.
## Reporting issues
When opening an issue for incorrect results or performance regressions, please include:
- Platform and CPU/GPU model.
- Compiler and version with exact compile flags.
- Small reproducer (input data and the TrigDx implementation used).
## License
See the LICENSE file in the repository for licensing details.

View File

@@ -8,5 +8,16 @@ if(NOT pybind11_FOUND)
FetchContent_MakeAvailable(pybind11)
endif()
# Needed to set ${Python_VERSION_MAJOR} and ${Python_VERSION_MINOR}
find_package(Python REQUIRED)
pybind11_add_module(pytrigdx bindings.cpp)
target_link_libraries(pytrigdx PRIVATE trigdx)
set_target_properties(pytrigdx PROPERTIES OUTPUT_NAME "trigdx")
set(PYTHON_SITE_PACKAGES
"${CMAKE_INSTALL_LIBDIR}/python${Python_VERSION_MAJOR}.${Python_VERSION_MINOR}/site-packages/trigdx"
)
install(TARGETS pytrigdx DESTINATION ${PYTHON_SITE_PACKAGES})
install(FILES __init__.py DESTINATION ${PYTHON_SITE_PACKAGES})

16
python/__init__.py Normal file
View File

@@ -0,0 +1,16 @@
from .trigdx import Reference, Lookup16K, Lookup32K, LookupAVX16K, LookupAVX32K
try:
from .trigdx import MKL
except ImportError:
pass
try:
from .trigdx import GPU
except ImportError:
pass
try:
from .trigdx import LookupXSIMD16K, LookupXSIMD32K
except ImportError:
pass

View File

@@ -72,7 +72,9 @@ void bind_backend(py::module &m, const char *name) {
.def("compute_sincosf", &compute_sincos<float>);
}
PYBIND11_MODULE(pytrigdx, m) {
PYBIND11_MODULE(trigdx, m) {
m.doc() = "TrigDx python bindings";
py::class_<Backend, std::shared_ptr<Backend>>(m, "Backend")
.def("init", &Backend::init);
@@ -91,4 +93,4 @@ PYBIND11_MODULE(pytrigdx, m) {
bind_backend<LookupXSIMDBackend<16384>>(m, "LookupXSIMD16K");
bind_backend<LookupXSIMDBackend<32768>>(m, "LookupXSIMD32K");
#endif
}
}

View File

@@ -2,6 +2,24 @@ include(FetchContent)
include(FindAVX)
add_library(trigdx reference.cpp lookup.cpp)
if(HAVE_AVX2)
target_compile_definitions(trigdx PUBLIC HAVE_AVX2)
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
"IntelLLVM")
target_compile_options(trigdx PUBLIC -xCORE-AVX2)
else()
target_compile_options(trigdx PUBLIC -mavx2)
endif()
elseif(HAVE_AVX)
target_compile_definitions(trigdx PUBLIC HAVE_AVX)
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel" OR CMAKE_CXX_COMPILER_ID STREQUAL
"IntelLLVM")
target_compile_options(trigdx PUBLIC -xAVX)
else()
target_compile_options(trigdx PUBLIC -mavx)
endif()
endif()
target_include_directories(trigdx PUBLIC ${PROJECT_SOURCE_DIR}/include)
if(HAVE_AVX)

View File

@@ -6,6 +6,16 @@
#include "trigdx/lookup_avx.hpp"
#if defined(HAVE_AVX) && !defined(__AVX__)
static_assert(HAVE_AVX == 0, "__AVX__ should be defined when HAVE_AVX is "
"defined");
#endif
#if defined(HAVE_AVX2) && !defined(__AVX2__)
static_assert(HAVE_AVX2 == 0, "__AVX2__ should be defined when HAVE_AVX2 is "
"defined");
#endif
template <std::size_t NR_SAMPLES> struct LookupAVXBackend<NR_SAMPLES>::Impl {
std::vector<float> lookup;
static constexpr std::size_t MASK = NR_SAMPLES - 1;

View File

@@ -20,8 +20,8 @@ template <std::size_t NR_SAMPLES> struct lookup_table {
cos_values[i] = cosf(i * PI_FRAC);
}
}
std::array<float, NR_SAMPLES> cos_values;
std::array<float, NR_SAMPLES> sin_values;
std::array<float, NR_SAMPLES> cos_values;
};
template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
@@ -33,7 +33,6 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
const m_type mask = m_type::broadcast(lookup_table_.MASK);
@@ -42,7 +41,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i;
for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag());
@@ -60,7 +59,7 @@ template <std::size_t NR_SAMPLES> struct cosf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term3);
const b_type t4 = xsimd::mul(dx4, term4);
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
@@ -98,7 +97,6 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
const m_type mask = m_type::broadcast(lookup_table_.MASK);
@@ -107,7 +105,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
const b_type term2 = b_type::broadcast(lookup_table_.TERM2); // 1/2!
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i;
for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag());
@@ -120,7 +118,7 @@ template <std::size_t NR_SAMPLES> struct sinf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term3);
const b_type t4 = xsimd::mul(dx4, term4);
const b_type cosdx = xsimd::add(xsimd::sub(term1, t2), t4);
const b_type sindx = xsimd::sub(dx, t3);
@@ -160,7 +158,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
constexpr uint_fast32_t VL = b_type::size;
const uint_fast32_t VS = n - n % VL;
const uint_fast32_t Q_PI = NR_SAMPLES / 4U;
const b_type scale = b_type::broadcast(lookup_table_.SCALE);
const m_type mask = m_type::broadcast(lookup_table_.MASK);
const b_type pi_frac = b_type::broadcast(lookup_table_.PI_FRAC);
@@ -170,7 +167,6 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
const b_type term3 = b_type::broadcast(lookup_table_.TERM3); // 1/3!
const b_type term4 = b_type::broadcast(lookup_table_.TERM4); // 1/4!
const m_type quarter_pi = m_type::broadcast(Q_PI);
uint_fast32_t i;
for (i = 0; i < VS; i += VL) {
const b_type vx = b_type::load(a + i, Tag());
@@ -183,7 +179,7 @@ template <std::size_t NR_SAMPLES> struct sin_cosf_dispatcher {
const b_type dx4 = xsimd::mul(dx2, dx);
const b_type t2 = xsimd::mul(dx2, term2);
const b_type t3 = xsimd::mul(dx3, term3);
const b_type t4 = xsimd::mul(dx4, term3);
const b_type t4 = xsimd::mul(dx4, term4);
idx = xsimd::bitwise_and(idx, mask);
b_type sinv = b_type::gather(lookup_table_.sin_values.data(), idx);