Removed unneeded first scaling attempt of the HMM. Cleaned up the WiimoteStreamer to be more readable as preparation to adapt to new functions with wiimotes interaction.
git-svn-id: svn://svn.code.sf.net/p/wiigee/code/trunk@92 c7eff9ee-dd40-0410-8832-91a4d88773cf
This commit is contained in:
@@ -1,336 +0,0 @@
|
||||
/*
|
||||
* wiigee - accelerometerbased gesture recognition
|
||||
* Copyright (C) 2007, 2008 Benjamin Poppinga
|
||||
*
|
||||
* Developed at University of Oldenburg
|
||||
* Contact: benjamin.poppinga@informatik.uni-oldenburg.de
|
||||
*
|
||||
* This file is part of wiigee.
|
||||
*
|
||||
* wiigee is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*/
|
||||
|
||||
package org.wiigee.logic;
|
||||
import java.text.*;
|
||||
import java.util.Vector;
|
||||
|
||||
/**
|
||||
* This is a Hidden Markov Model implementation which internally provides
|
||||
* the basic algorithms for training and recognition (forward and backward
|
||||
* algorithm). Since a regular Hidden Markov Model doesn't provide a possibility
|
||||
* to train multiple sequences, this implementation has been optimized for this
|
||||
* purposes using some state-of-the-art technologies described in several papers.
|
||||
*
|
||||
* @author Benjamin 'BePo' Poppinga
|
||||
*
|
||||
*/
|
||||
|
||||
public class ScaledHMM {
|
||||
/** The number of states */
|
||||
private int numStates;
|
||||
|
||||
/** The number of observations */
|
||||
private int sigmaSize;
|
||||
|
||||
/** The initial probabilities for each state: p[state] */
|
||||
public double pi[];
|
||||
|
||||
/** The state change probability to switch from state A to
|
||||
* state B: a[stateA][stateB] */
|
||||
public double a[][];
|
||||
|
||||
/** The probability to emit symbol S in state A: b[stateA][symbolS] */
|
||||
public double b[][];
|
||||
|
||||
/**
|
||||
* Initialize the Hidden Markov Model in a left-to-right version.
|
||||
*
|
||||
* @param numStates Number of states
|
||||
* @param sigmaSize Number of observations
|
||||
*/
|
||||
public ScaledHMM(int numStates, int sigmaSize) {
|
||||
this.numStates = numStates;
|
||||
this.sigmaSize = sigmaSize;
|
||||
pi = new double[numStates];
|
||||
a = new double[numStates][numStates];
|
||||
b = new double[numStates][sigmaSize];
|
||||
this.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset the Hidden Markov Model to the initial left-to-right values.
|
||||
*
|
||||
*/
|
||||
private void reset() {
|
||||
int jumplimit = 2;
|
||||
|
||||
// set startup probability
|
||||
pi[0] = 1;
|
||||
for(int i=1; i<numStates; i++) {
|
||||
pi[i] = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
for(int i=0; i<numStates; i++) {
|
||||
for(int j=0; j<numStates; j++) {
|
||||
a[i][j]=1/numStates;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// set state change probabilities in the left-to-right version
|
||||
// NOTE: i now that this is dirty and very static. :)
|
||||
for(int i=0; i<numStates; i++) {
|
||||
for(int j=0; j<numStates; j++) {
|
||||
if(i==numStates-1 && j==numStates-1) { // last row
|
||||
a[i][j] = 1.0;
|
||||
} else if(i==numStates-2 && j==numStates-2) { // next to last row
|
||||
a[i][j] = 0.5;
|
||||
} else if(i==numStates-2 && j==numStates-1) { // next to last row
|
||||
a[i][j] = 0.5;
|
||||
} else if(i<=j && i>j-jumplimit-1) {
|
||||
a[i][j] = 1.0/(jumplimit+1);
|
||||
} else {
|
||||
a[i][j] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// emission probability
|
||||
for(int i=0; i<numStates; i++) {
|
||||
for(int j=0; j<sigmaSize; j++) {
|
||||
b[i][j] = 1.0/(double)sigmaSize;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Trains the Hidden Markov Model with multiple sequences.
|
||||
* This method is normally not known to basic hidden markov
|
||||
* models, because they usually use the Baum-Welch-Algorithm.
|
||||
* This method is NOT the traditional Baum-Welch-Algorithm.
|
||||
*
|
||||
* If you want to know in detail how it works please consider
|
||||
* my Individuelles Projekt paper on the wiigee Homepage. Also
|
||||
* there exist some english literature on the world wide web.
|
||||
* Try to search for some papers by Rabiner or have a look at
|
||||
* Vesa-Matti Mäntylä - "Discrete Hidden Markov Models with
|
||||
* application to isolated user-dependent hand gesture recognition".
|
||||
*
|
||||
*/
|
||||
public void train(Vector<int[]> trainsequence) {
|
||||
|
||||
double[][] a_new = new double[a.length][a.length];
|
||||
double[][] b_new = new double[b.length][b[0].length];
|
||||
// re calculate state change probability a
|
||||
for(int i=0; i<a.length; i++) {
|
||||
for(int j=0; j<a[i].length; j++) {
|
||||
double zaehler=0;
|
||||
double nenner=0;
|
||||
|
||||
for(int k=0; k<trainsequence.size(); k++) {
|
||||
this.reset();
|
||||
int[] sequence = trainsequence.elementAt(k);
|
||||
|
||||
double[][] fwd = this.forwardProc(sequence);
|
||||
double[][] bwd = this.backwardProc(sequence);
|
||||
double prob = this.getProbability(sequence);
|
||||
|
||||
double zaehler_innersum=0;
|
||||
double nenner_innersum=0;
|
||||
|
||||
for(int t=0; t<sequence.length-1; t++) {
|
||||
double scaled_fwd = this.getScaledValue(fwd, fwd, i, t);
|
||||
double scaled_bwd = this.getScaledValue(bwd, fwd, i, t);
|
||||
double scaled_bwd_tp1 = this.getScaledValue(bwd, fwd, i, t+1);
|
||||
double scaling_factor_tp1 = this.getScalingFactor(fwd, t+1);
|
||||
zaehler_innersum+=scaled_fwd*a[i][j]*b[j][sequence[t+1]]*scaled_bwd_tp1*scaling_factor_tp1;
|
||||
nenner_innersum+=scaled_fwd*scaled_bwd;
|
||||
System.out.println("scaled_fwd = "+scaled_fwd);
|
||||
System.out.println("scaled_bwd = "+scaled_bwd);
|
||||
System.out.println("scaling factor = "+scaling_factor_tp1);
|
||||
}
|
||||
zaehler+=zaehler_innersum;
|
||||
nenner+=nenner_innersum;
|
||||
} // k
|
||||
|
||||
a_new[i][j] = zaehler/nenner;
|
||||
} // j
|
||||
} // i
|
||||
|
||||
// re calculate emission probability b
|
||||
for(int i=0; i<b.length; i++) { // zustaende
|
||||
for(int j=0; j<b[i].length; j++) { // symbole
|
||||
double zaehler=0;
|
||||
double nenner=0;
|
||||
|
||||
for(int k=0; k<trainsequence.size(); k++) {
|
||||
this.reset();
|
||||
int[] sequence = trainsequence.elementAt(k);
|
||||
|
||||
double[][] fwd = this.forwardProc(sequence);
|
||||
double[][] bwd = this.backwardProc(sequence);
|
||||
double prob = this.getProbability(sequence);
|
||||
|
||||
double zaehler_innersum=0;
|
||||
double nenner_innersum=0;
|
||||
|
||||
|
||||
for(int t=0; t<sequence.length-1; t++) {
|
||||
if(sequence[t]==j) {
|
||||
zaehler_innersum+=fwd[i][t]*bwd[i][t];
|
||||
}
|
||||
nenner_innersum+=fwd[i][t]*bwd[i][t];
|
||||
}
|
||||
zaehler+=(1/prob)*zaehler_innersum;
|
||||
nenner+=(1/prob)*nenner_innersum;
|
||||
} // k
|
||||
|
||||
b_new[i][j] = zaehler/nenner;
|
||||
} // j
|
||||
} // i
|
||||
|
||||
this.a=a_new;
|
||||
this.b=b_new;
|
||||
}
|
||||
|
||||
/**
|
||||
* Traditional Forward Algorithm.
|
||||
*
|
||||
* @param o the observationsequence O
|
||||
* @return Array[State][Time]
|
||||
*
|
||||
*/
|
||||
private double[][] forwardProc(int[] o) {
|
||||
double[][] f = new double[numStates][o.length];
|
||||
for (int l = 0; l < f.length; l++) {
|
||||
f[l][0] = pi[l] * b[l][o[0]];
|
||||
}
|
||||
for (int i = 1; i < o.length; i++) {
|
||||
for (int k = 0; k < f.length; k++) {
|
||||
double sum = 0;
|
||||
for (int l = 0; l < numStates; l++) {
|
||||
sum += f[l][i-1] * a[l][k];
|
||||
}
|
||||
f[k][i] = sum * b[k][o[i]];
|
||||
}
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the probability that a observation sequence O belongs
|
||||
* to this Hidden Markov Model without using the bayes classifier.
|
||||
* Internally the well known forward algorithm is used.
|
||||
*
|
||||
* @param o observation sequence
|
||||
* @return probability that sequence o belongs to this hmm
|
||||
*/
|
||||
public double getProbability(int[] o) {
|
||||
double prob = 0.0;
|
||||
double[][] forward = this.forwardProc(o);
|
||||
// add probabilities
|
||||
for (int i = 0; i < forward.length; i++) { // for every state
|
||||
prob += forward[i][forward[i].length - 1];
|
||||
}
|
||||
return prob;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Backward algorithm.
|
||||
*
|
||||
* @param o observation sequence o
|
||||
* @return Array[State][Time]
|
||||
*/
|
||||
public double[][] backwardProc(int[] o) {
|
||||
int T = o.length;
|
||||
double[][] bwd = new double[numStates][T];
|
||||
/* Basisfall */
|
||||
for (int i = 0; i < numStates; i++)
|
||||
bwd[i][T - 1] = 1;
|
||||
/* Induktion */
|
||||
for (int t = T - 2; t >= 0; t--) {
|
||||
for (int i = 0; i < numStates; i++) {
|
||||
bwd[i][t] = 0;
|
||||
for (int j = 0; j < numStates; j++)
|
||||
bwd[i][t] += (bwd[j][t + 1] * a[i][j] * b[j][o[t + 1]]);
|
||||
}
|
||||
}
|
||||
return bwd;
|
||||
}
|
||||
|
||||
// scales a fwd/bwd-procedure at i/t.
|
||||
private double getScaledValue(double[][] pcd, double[][] divisor, int i, int t) {
|
||||
double sum = 0;
|
||||
for(int v=0; v<this.numStates; v++) {
|
||||
sum += divisor[v][t];
|
||||
}
|
||||
return pcd[i][t]/sum;
|
||||
}
|
||||
|
||||
private double getScalingFactor(double[][] divisor, int t) {
|
||||
double ret = 0;
|
||||
for(int i=0; i<this.numStates; i++) {
|
||||
ret += divisor[i][t];
|
||||
}
|
||||
return 1/ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints everything about this model, including
|
||||
* all values. For debug purposes or if you want
|
||||
* to comprehend what happend to the model.
|
||||
*
|
||||
*/
|
||||
public void print() {
|
||||
DecimalFormat fmt = new DecimalFormat();
|
||||
fmt.setMinimumFractionDigits(5);
|
||||
fmt.setMaximumFractionDigits(5);
|
||||
for (int i = 0; i < numStates; i++)
|
||||
System.out.println("pi(" + i + ") = " + fmt.format(pi[i]));
|
||||
System.out.println();
|
||||
for (int i = 0; i < numStates; i++) {
|
||||
for (int j = 0; j < numStates; j++)
|
||||
System.out.print("a(" + i + "," + j + ") = "
|
||||
+ fmt.format(a[i][j]) + " ");
|
||||
System.out.println();
|
||||
}
|
||||
System.out.println();
|
||||
for (int i = 0; i < numStates; i++) {
|
||||
for (int k = 0; k < sigmaSize; k++)
|
||||
System.out.print("b(" + i + "," + k + ") = "
|
||||
+ fmt.format(b[i][k]) + " ");
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
public double[][] getA() {
|
||||
return this.a;
|
||||
}
|
||||
|
||||
public void setA(double[][] a) {
|
||||
this.a = a;
|
||||
}
|
||||
|
||||
public double[][] getB() {
|
||||
return this.b;
|
||||
}
|
||||
|
||||
public void setB(double[][] b) {
|
||||
this.b=b;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user